Experimental Neutrino Physics

Anselmo Cervera Villanueva IFIC (Valencia)

Benasque, 10-11 Febrero 2009

The neutrino

The most curious elementary particle and the one that gave us more surprises

is still a perfect unknown

...because it only interacts weakly

three active neutrinos only

+ the possibility of sterile neutrinos

Flavour mixing (oscillations)

Introduction

Massive Neutrinos

First evidence of Physics beyond the Standard Model

the θ₁₃ quest the path to Which way?

Neutrino sources

Introduction

the θ₁₃ quest the path to which way?

Flavour Mixing

weak eigenstates

 \bullet m₁

mass eigenstates

$$\theta_{23}$$

$$\theta_{\text{13}},\,\delta_{\text{CP}}$$

$$\theta_{12}$$

$$\alpha_1, \alpha_2$$

PMNS mixing matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 atmospheric sector connection between solar and atmospheric solar sector

$$\begin{vmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Dirac

the path to CP violation

Majorana

Neutrino oscillations

Requirements: Massive neutrinos & different masses

mass eigenstates

$$P_{\nu_{\mu}\nu_{\tau}} = \sin^2 2\theta \cdot \sin^2 \left(\frac{\Delta m^2 \cdot L}{4E_{\nu}}\right)$$

Experimental results

Errors from 10 to 30%

$$\Delta m_{21}^2 = 7.67_{-0.21}^{+0.22} {}^{(+0.67)}_{-0.61} \times 10^{-5} \text{ eV}^2,$$

$$\Delta m_{31}^2 = \begin{cases} -2.37 \pm 0.15 {}^{(+0.43)}_{-0.46} \times 10^{-3} \text{ eV}^2 & \text{(inverted hierarchy)}, \\ +2.46 \pm 0.15 {}^{(+0.47)}_{-0.42} \times 10^{-3} \text{ eV}^2 & \text{(normal hierarchy)}, \end{cases}$$

$$\theta_{12} = 34.5 \pm 1.4 {}^{(+4.8)}_{-4.0},$$

$$\theta_{23} = 42.3^{+5.1}_{-3.3} {}^{(+11.3)}_{-7.7},$$

$$\theta_{13} = 0.0^{+3.9} (^{+9.0})$$

Still missing $\theta_{13} \quad sign(\Delta m^2 23)$ $\delta_{cp} \quad \vdots \quad \theta_{23} = 45^{\circ} ?$

Mixing angles

Introduction

the θ₁₃ quest the path to which way?

Mass square differences

the θ₁₃ quest the path to CP violation

Sterile neutrinos

LSND

$$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$$

L/E ~ 1

 \downarrow
 $\Delta m^2 \sim 1 \text{ eV}$

Incompatible with all other experiments for 3 neutrinos only

MiniBooNE

Excludes the LSND result as two family oscillations

the path to CP violation

Absolute mass

Cosmology

 $\sum m_v < 0.3-0.9 \text{ eV}$

Neutrinoless doble B decay

 $\langle m_{\beta\beta} \rangle < 0.3-0.9 \text{ eV}$

Tritium β decay

Mainz (2000)

 $m_{ve} < 2.2 \text{ eV}$

Katrin (2009)

 $m_{ve} < 0.2 \text{ eV}$

Theoretical problem: Why neutrino masses are that small?

Dirac or Majorana

Dirac

$$\lambda \bar{\psi}_R \phi \psi_L \xrightarrow{\text{SSB}} \lambda \upsilon \bar{\psi}_R \psi_L$$
$$m_{\nu} \equiv \lambda \upsilon$$

Hierarchy problem Why λ is much smaller for neutrinos than for the other fermions?

Majorana

$$\frac{1}{\Lambda}(\bar{\psi}_L\phi)(\phi^T\psi_L^c) \xrightarrow{\text{SSB}} \frac{\lambda v^2}{\Lambda} \bar{\psi}_L\psi_L^c$$

$$m_{\nu} \equiv \lambda \frac{v^2}{\Lambda}$$

$\Lambda \rightarrow Scale of new Physics$

∧ very large → neutrino mass very small

Neutrinoless double beta decay

A very rare process $T_{1/2}>10^{26}$ years

Intercambio de neutrinos ligeros de Majorana

Talk by Igor Arastorza on Thursday

Other mechanisms are possible But all imply Majoranna neutrinos

... y its connection with mass

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

Effective Majorana mass:

- mixing angles
- neutrino masses
- Majorana phases

$$\langle m_{\beta\beta} \rangle = \left| \sum_{j} m_{j} U_{ej}^{2} \right|$$

which way?

The big questions

Are there more than 3 light neutrinos (sterile)?

Why θ_{13} is that small?

If θ_{23} is maximal, why?

Introduction

Why neutrinos are much lighter than the other fermions?

Is baryon asymmetry produced via leptogenesis?

the θ₁₃ quest

the path to

CP violation

Detecting neutrino oscillations

Ingredients

- Neutrino flux and spectra before osc. ?
 - Theoretical models
 - near detector(s): fine grain
 - Hadron production
- Neutrino x-sections at E_v ?
 - measure x-sections at near detectors or dedicated experiments

- Measure neutrino type and energy in very massive detector
- Compare prediction with observation

the θ₁₃ quest

CP violation

Neutrino x-sections

Neutrino x-sections are poorly know at ~ 1 GeV

MINOS

MiniBooNE

SciBooNE

G. Zeller v CC cross-section $\sigma(\nu_{\mu}N \to \mu^{-}X)/E(GeV) (10^{-38} \text{ cm}^{2}GeV^{-1})$ 7. 8. 9. 8. 1. 7. TOTAL Single Pion 10² 10 10-1 Ε_ν (GeV)

T2K-ND280

Minerva

the path to CP violation

Oscillation length

$$\begin{split} P_{\nu_{\mu}\nu_{\tau}} = \sin^2 2\theta \cdot \sin^2 & \left(\frac{\Delta m^2 \cdot L}{4 E_{\nu}} \right) \\ & \frac{\Delta m^2 \cdot L}{4 E_{\nu}} = \frac{\pi}{2} \xrightarrow{E_{\nu} = 1 GeV} L_{osc} = \frac{2\pi}{\Delta m^2} \end{split}$$

$$L_{osc}^{23} = \frac{2\pi}{\Delta m_{22}^2} \simeq 500 \, Km$$

atmospheric

$$L_{osc}^{12} = \frac{2\pi}{\Delta m_{12}^2} \simeq 15000 \, Km$$

solar

Atmospheric neutrinos

Ratio of $\nu_{\mu}/\nu_{e} \sim 2$

$$L/E \sim 1 - 10^4 \text{ km/GeV}$$

Exp. example I: Super-Kamiokande

The power of large water cerenkov detectors

μ-like ring

e-like ring

 $\theta_{23} \quad |\Delta m_{23}^2|$

Introduction

the θ_{13} quest the path to CP violation which way ?

Solar neutrinos

Standard Solar Model

Experimental example II: SNO

$$\nu_e + d \rightarrow p + p + e^-$$
 (CC),
 $\nu_x + d \rightarrow p + n + \nu_x$ (NC),
 $\nu_x + e^- \rightarrow \nu_x + e^-$ (ES).

$$\phi_e = 1.76^{+0.05}_{-0.05}(\text{stat.})^{+0.09}_{-0.09}(\text{syst.})$$

$$\phi_{\mu\tau} = 3.41^{+0.45}_{-0.45}(\text{stat.})^{+0.48}_{-0.45}(\text{syst.})$$

 θ_{12} Δm_{12}^2

Reactor neutrinos

$$\langle N_v \rangle$$
 / fission ≈ 6

1 GW_{th}
$$\Rightarrow$$
 ~2 · 10²⁰ v/s

E_v ~ few MeV

Pure ve

Experimental example III: Kamland

 $\theta_{12} \quad \Delta m_{12}^2$

 $L/E \sim 180/0.003 = 60000 \text{ Km/GeV}$

the path to CP violation

Neutrino beams

conventional neutrino beam

the path to CP violation

Experimental example IV: K2K

CP violation

Experimental example V: MINOS

CP violation

All together

Introduction the θ_{13} quest the path to CP violation which way?

Missing parameters

$$\frac{\theta_{13}}{\delta_{cp}} \quad sign(\Delta m^2_{23})$$

The θ_{13} quest

From 2 to 3 families

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 atmospheric sector connection between solar and atmospheric solar sector

~ identity

 $\theta_{13} < 10^{\circ}$ (Chooz)

$$\begin{array}{c} \textbf{atmospheric} & \textbf{solar} & \textbf{interference} \\ P(\text{no } \nu_e) & \stackrel{\cdot}{\simeq} \frac{cos^2 2\theta_{13} \cdot P_{atm}(\theta_{23}, |\Delta m^2_{23}|)}{2} \cdot P_{atm}(\theta_{23}, |\Delta m^2_{23}|) \\ P(\nu_e) & \stackrel{\cdot}{\simeq} \frac{sin^2 2\theta_{13}}{2} \cdot P_{atm}(\theta_{23}, |\Delta m^2_{23}|) + P_{sol}(\theta_{12}, \Delta m^2_{12}) \end{array} \\ + P_{sol}(\theta_{12}, \Delta m^2_{12}) & \stackrel{\cdot}{=} \frac{sin^2 2\theta_{13} \cdot P_{atm}(sin^2\theta_{23}, |\Delta m^2_{23}|) \cdot F(\delta_{cp}, \Delta m^2_{23})}{2} \end{array}$$

the θ₁₃ quest

the path to CP violation

Subdominant oscillation

the θ₁₃ quest

the path to CP violation

which way?

Reactor neutrinos

$$n \rightarrow p + e^- + \overline{\nu}_e$$

 $E_v \sim \text{few MeV}$

 $L_{\rm osc\ peak} \sim Km$

Below muon and tau production thresholds → dissapearence

$$P_{\nu_e\nu_e} = 1 - P_{\nu_e\nu_\mu} - P_{\nu_e\nu_\tau} \simeq 1 - \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m_{23}^2 L}{4E}\right)$$

A clean probe of θ_{13}

- \bullet Interference term cancels out: **no dependency on \delta_{cp}**
- Short baseline: no dependency on mass hierarchy

the θ_{13} quest

The solar term is very small: small dependency on solar params

Chooz

Introduction

the θ₁₃ quest

the path to CP violation

which way?

Double-Chooz

the θ_{13} quest the path to CP violation

Expected sensitivity

Timeline

2008-09: Far detector construction and integration

the θ₁₃ quest

- Mid-2009: Phase I data taking
- 2008-10: near site and detector
- 2011: Start of phase II data taking

Super-beams I: T2K

Off-axis beam

oscillation peak at 295 Km

 v_{e} contamination

2% **>** 0.2 %

Experimental technique

Signal

Quasi-elastic events with an electron-like ring

$$E_{\nu}^{rec} = f(E_e, \theta)$$

Backgrounds

v_e contamination in the beam ∼ 0.2% at the oscillation peak

irreducible →substract π₀ production in neutral currents2-rings appearing as 1

the path to CP violation

which way?

The need of near detectors

Introduction

the θ_{13} quest

CP violation

T2K expected sensitivity

 $\theta_{13} = 9^{\circ}$

Current status θ_{13} <10° $\sin^2 2\theta_{13}$ < 0.15

The θ₁₃ quest

Subdominant oscillation:

Accelerators Reactors

$$u_{\mu} \rightarrow \nu_{e} \qquad \overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$$

Outlook

... the most curios elementary particle and the one that gave us more surprises

has revealed part of his mystery in the last decade

If Nature is generous T2K, D-Chooz, ... will observe the subdominant oscillation $\nu_{\mu} \rightarrow \nu_{e} \ (\nu_{e} \rightarrow \nu_{e})$ and measure θ_{13}

the path to CP violation