Neutrino Telescopes

IceCube, ANTARES and KM3NeT

J.J. Hernández-Rey IFIC

XXXVII International Meeting on Fundamental Physics, Benasque, February 2009

Motivations

If $E_v \approx 10 \text{ GeV}-10^2 \text{ EeV} \rightarrow 10 \text{ orders of magnitude range}$ (same span as radio to X-ray in EM radiation, but at $\lambda < 10^{-14} \text{ cm}$)

Cosmic messengers

Why neutrino astronomy?

- Protons are deflected by magnetic fields ($E_p < 10^{19} \text{ eV}$) UHE protons interact with the CMB ($E_p > 10^{19} \text{ eV} \rightarrow 30 \text{ Mpc}$)
- Neutrons decay (\sim 10 kpc at E \sim EeV).
- Photons interact with the EBL (~100 Mpc) and CMB (~10 kpc).

Neutrinos are neutral weakly interactive particles.

Scientific scope

Where can neutrinos come from?

WIMP decay products

HE neutrinos are the decay sub-products of the **annihilation** of **WIMPs** which may concentrate in astrophysical objects.

$$\chi + \chi \rightarrow q\overline{q}, \dots \rightarrow X + \nu\overline{\nu}$$

Astrophysical objects

HE neutrinos appear as the sub-product of interactions of **accelerated protons** or nuclei with matter or radiation

 $p + A / \gamma \rightarrow \pi^{\pm} + \dots$ $\rightarrow \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) + \dots$ $\rightarrow e^{\pm} + \nu_{e}(\overline{\nu}_{e}) + \nu_{\mu}(\overline{\nu}_{\mu}) + \dots$

High energy cosmic rays

•From A. Castellina using J.R.Hoerandel

Cosmic Rays, Gamma-rays and Neutrinos

Leptonic acceleration

-Electrons are accelerated in cosmic environments via Fermi Mechanism.

-Gamma rays are produced in the interaction of multi-TeV electrons with ambient light (IC scattering).

- Neutrinos are not foreseen in this context.

Hadronic acceleration

-Protons and heavy nuclei are accelerated via Fermi Mechanism and interact with ambient photons.

$$p + \gamma \to \Delta^{+} \to \pi^{0} + p$$
$$p + \gamma \to \Delta^{+} \to \pi^{+} + n$$

–Gamma rays are produced via π^0 –meson decay.

-Neutrinos are also produced via π^+ -meson decay.

X-ray observations indicate that leptonic acceleration exists. But we observe CR protons, hence there should be hadronic acceleration.

black holes, merging neutron stars,...

Neutrinos sources

Extra-Galactic sources

 The two most promising candidates are: Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB)

AGNs

A high luminosity compact region at the centre of some galaxies that are believed to be supermassive black holes that acrrete matter. "Different objects" are just AGNs with different features: "Blazars" (BL Lac, FSRQs, etc.) are AGNs with jets pointing to Earth.

• The P.A. Observatory sees a Correlation between UHECR and nearby AGNs

P.A.O results on UHECRs

Véron-Cetty&Véron catalogue (292 AGNs

with D < 75 Mpc).

- Correlation is not a proof of causality
- The VCV catalogue is known to be incomplete

Extra-Galactic sources and the CR – Neutrino relationship

Extra-Galactic sources

• Waxman & Bahcall limit

 $E^2 dN/dE \approx 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$ (E ~ 100 PeV)

Estimate the relation between $E^2 dN/dE$ for CR and neutrinos Assume optically thin sources Assume some evolution with z Take into account the effect of oscillations:

 $(v_e:v_u:v_\tau) \rightarrow (1:2:0) \rightarrow (1:1:1)$

•MPR

Possibility of some other effects (different injection spectra, optically thin sources, neutron escape)

• Some controversy

SNRs - RX J1713.7-3946

A special SNR

• A clear shell-type SN discovered in soft X-rays by ROSAT. Bright X-ray emission by ASCA. In HE gamma by CANGAROO AND CANGAROO-II.

• CANGAROO-II hinted a possible hadronic origin. HESS (2003-2005) confirms the difficulty to explain it by leptonic acceleration.

•Unnaturally low B fields have to be assumed to avoid too high synchroton radiation

(B \leq 10 µG, even interestellar fields are higher and shocks are expected to amplify fields. Measurments in other SNRs indicate B ~ 100 µG)

• Spectrum up to several tens of TeV. If gammas come from π^0 , then protons are accelerated at E > several hundreds of TeV.

• Two other cases (RX J0852.0-4622 and RCW86, acceleration still unclear)

The Galactic centre and plane by HESS

Several gamma-ray sources in the Galactic plane

- Sgr A* (a radio source) lies on the position of a supermassive black hole (~ 3×10^6 solar masses in 17 lighthours) in the Galaxy (according to star movements).
- Sgr A* emits X-rays (among others) HESS J1745-290 seems to be very near Sgr A*(excluded to come from Sgr A East, a SNR)
- No coincide of X-ray flares and γ -rays observed
- There is a PWN nearby (G259.95-0.04)

A plethora of new y sources

binary pulsars

galactic periodic sources

Micro-quasars

"Dark sources" (not seen in X-rays or visible)

Extended sources

Predictions

Source Name	Ref.	@ (°)	Vis.	Spec.	param Γ _ν	eters *o	$E_{V} > 1.7$ $N_{\rm arc}$	Natm	$E_V > 5 { m Tr} \ N_{ m arc}$	Nati
			Sc	ource class /	A (supe	enova r	omnants)			
RX J1713.7-3946	20.06d	1.3	0.74	15.52	1.72	1.35	7-14 (11)	41	2.6-6.7 (4.6)	8.2
RX J0852.0-4622	2007	2.0	0.83	16.76	1.76	1.19	7-15 (11)	104	1.9-6.5 (4.2)	21
HESS J1640-465	20.06a	0	0.83	0.93	2.41		0.4-3.3 (2.2)	8.7	0.0-2.1 (1.3)	1.8
HESS J1745-290†	2004a	< 0.1	0.65	0.85	2.29		1.1 - 2.7 (2.0)	6.4	0.5-1.6 (1.3)	1.3
HESS J1834-087	20.06a	0.2	0.54	0.80	2.45		0.2 - 1.7 (1.1)	6.0	0.0-1.1 (0.7)	1.2
HESS J1712-381	20.06%	0.1	0.73	0.23	2.25		0.0-1.5 (0.6)	7.2	0.0-1.1 (0.4)	1.4
Sums for source da	as A						~ 27	173	~ 12	25
				Source clas	sB(b	inary sy	stems)			
LS 5039 (INFC) ++	20.06É	0.1	0.57	2.50	1.61	1.01	0.3-0.7 (0.5)	2.5	0.1-0.3 (0.2)	0.5
LS 5039 (SUPC) #	20.06f	0.1	0.57	0.26	2.51		0.1-0.3 (0.2)	3.0	0.0-0.2 (0.1)	0.6
PSR B1259-63	2005h	< 0.1	1.00	0.34	2.72		0.1-0.9 (0.6)	9.1	0.0-0.4 (0.3)	1.7
Source class C (no counterparts at other wavelengths)										
HESS J1202-621	2005g	0.3	1.00	11.99	1.29	0.21	0.8-2.3 (1.6)	11	0.1-0.5 (0.3)	2.1
HESS J1745-303	20.05%	0.4	0.66	1.01	1.79		0-18 (9)	9.0	0-16 (7)	1.8
HESS J1614-518	20.06%	0.5	1.00	2.41	2.44		1-10 (6)	19	0.0-6.7 (3.7)	4.0
HESS J1837-069	20.06%	0.2	0.53	1.65	2.27		1.2 - 4.5 (3.3)	5.9	0.4-3.2 (2.2)	1.2
HESS J1634-472	20.06%	0.2	0.85	0.64	2.36		0.0-3.1 (1.7)	9.5	0.0-2.2 (1.1)	2.0
HESS J1708-410	2006a	0.1	0.76	0.44	2.33		0.1-1.6 (1.1)	7.6	0.0-1.1 (0.7)	1.5
ouns for source cia			-				10 23	92	PF 12	13
			s	ource class	D (pul	sar wind	i nebula)			
VolnX	20.06c	0.8	0.51	11.75	0.98	0.84	9-23 (16)	23	5-15 (10)	4.6
HESS J1825-137	2006h	0.5	0.57	10.75	2.05	4.24	5-10 (8)	9.5	2.2-5.2 (3.7)	1.8
Crab Nobula	20.06g	< 0.1	0.39	22.38	2.15	1.72	4.0-7.6 (5.8)	5.2	1.1 - 2.7 (1.9)	1.1
HESS J1632-478	20.05%	0.3	0.67	1.87	2.11		0-15 (9)	12	0-12 (7)	2.4
HESS LIGIS-508	20.054	0.2	1.00	2.11	2.27		3.4-9.5 (7.1)	14	0.3-5.9 (4.3)	3.0
HESS 11400 - 507	20004	0.1	1.00	1.16	0.05		2.0 - 5.3 (4.6)		0.7-4.4 (3.3)	1.0
HESS J1418-609	2005e	0.1	1.00	0.94	2.19		1.7 - 6.1 (4.3)	9.6	0.8-45 (3.0)	1.9
HESS J1813-178	20.05%	0.1	0.59	0.96	2.09		0.7-4.6 (3.2)	5.6	0.2 - 3.6 (2.4)	1.1
HESS J1702-420	20.05a	0.2	0.77	0.62	2.32		0.5-3.3 (2.1)	8.4	0.0-2.3 (1.4)	1.7
HESS J1804-216	20.06a	0.4	0.61	1.49	2.73		0.6-2.0 (1.5)	8.4	0.1-1.0 (0.7)	1.7
G0.9+0.1	20.05 a	< 0.1	0.65	0.27	2.31		0.1-0.9 (0.6)	6.2	0.0-0.6 (0.4)	1.2
Sums for source dis	as D						~ 65	122	~ 41	24
			Dif	Tuso emissio	ns from	m CR in	ateractions			
Gal. Centre Ridge	20.066	1.6×0.6	0.65	1.29	2.29		1.0-4.2 (3.0)	27	0.3-2.9 (2.0)	5.3
			Intogr	nted emissi	ons fro	m the C	alactic plane			
All known sources							~ 122	399	~ 72	50
Diffuse Plane Emissi	on	60 × 2.0					24	1024	11	203

Within some natural assumptions a few neutrino events are predicted in a km3 detector

Kappes et al, astro-ph/0607286

Required neutrino fluxes

Powerful sources

Required luminosity in neutrinos is:

$$L_{v} \approx N \left(\frac{D}{4 \, Gpc}\right)^{2} \left(\frac{AT}{1 \, km^{2} \, yr}\right)^{-1} \times 10^{46} \, erg \, / \, s$$

N – Observed neutrinos ; D – Source distance A – Effective area ; T – Data taking time

• For a few observed neutrinos in one year in a detector of A ~ 1 km² coming from 4 Gpc $\rightarrow L_v \sim 10^{47}$ erg/s

• 10¹³ times the power of our Sun: Only AGNs (10⁴⁸ erg/s, continuous) and GRBs (10⁵² erg/s, instantaneous) are known to deliver such power)

• In the Galaxy (D ~ few kpc) $\rightarrow L_v \sim 10^{34}$ erg/s. Only SNRs, PWN and micro-quasars could deliver such power.

Some distances The Milky Way 30 kpc across Andromeda 0.8 Mpc

• Virgo Cluster (the nearest large cluster) D = 18 Mpc

Galaxy RXJ1242-11
 (a supermassive black hole)
 D ~ 200 Mpc

The observable Universe D ~ 14 Gpc

To give you an idea: 1 attoparsec ≈ 1 inch (as useless for intuition as any other equivalence)

Detection principle

Muon neutrinos are well suited for HE detection (crosssection and muon range increase with energy)

Muons emit Cherenkov light collected by a lattice of PMTs.

Other signatures can also be detected. Long track \rightarrow angular resolution

Cherenkov Neutrino detection

Different channels, different energy regions

Earth starts to become opaque at E~1 PeV Below the horizon PeV neutrinos can be detected Downgoing tracks at high energies (EeV) can only come neutrinos EeV PeV TeV $I80^{\circ}$

In addition to muons, EM showers can be identified.

Tau neutrinos can be identified by double bang events (production and decay).

Effective Area and Energy response

Neutrino-nucleon cross-section

$$N_{\mu} = \int V_{eff} (E_{\nu}, \theta_{\nu}, \phi_{\nu}) (\rho N_{A}) \sigma(E_{\nu}) \frac{d\Phi_{\nu}}{dE_{\nu}d\Omega_{\nu}} dE_{\nu} d\Omega_{\nu}$$
Taraet nucleon densitv

$$A_{eff}^{\nu} = V_{gen} \times \frac{N_{xxx}(E_{\nu}, \theta_{\nu}, \phi_{\nu})}{N_{gen}(E_{\nu}, \theta_{\nu}, \phi_{\nu})} \times (\rho N_{A}) \sigma(E_{\nu}) \times P_{earth}(E_{\nu}, \theta_{\nu})$$

$$P_{earth}(E_{\nu}, \theta_{\nu}) = e^{-N_{A} \sigma(E_{\nu}) \int \rho dI}$$

Depth top view 200 m # 1500 m A 2000 m 50 m SuperK ! - 2500 m

AMANDA Detector

1997-99: AMANDA-B10

(inner lines of AMANDA-II)

- 10 strings
- 302 PMTs

Year	Livetime
2000	197 d
2001	193 d
2002	204 d
2003	213 d
2004	194 d
2005	199 d
2006	187d
Total	3.8 years

Since 2000: AMANDA-II

- 19 strings
- 677 OMs
- 20-40 PMTs / string

merged into IceCube

Diffuse flux limits

Expected precision (90%, 95% and 99% C.L.) in flux (wrt Bartol) and spectral index for the whole AMANDA data set.

Diffuse fluxes

From the lack of excess wrt atmospheric limits can be set on neutrino diffuse fluxes assuming E⁻² spectrum

AMANDA Point sources

Equatorial sky map of 6595 events The coosed iby iAdaAt both this should happen 95% of the time with the present statistics.

26 sources selected for search

Source	Φ_{90}	$p ext{-value}$
Crab Nebula	9.27	0.10
MGRO J2019+37	9.67	0.077
Mrk 421	2.54	0.82
Mrk 501	7.28	0.22
LS I +61 303	14.74	0.034
Geminga	12.77	0.0086
1 ES 1959 + 650	6.76	0.44
M87	4.49	0.43
Cygnus X-1	4.00	0.57

For 26 sources, $p \le 0.0086$ occurs 20% of the time for at least one source.

 $E^2 \Phi_{\nu_{\mu}+\nu_{\tau}} < \Phi_{90} \times 10^{-11} \, TeV \, cm^{-2} \, s^{-1}$

Other searches

No coincidence of v cascade events with 73 GRBs in all the sky. Limits on several GRB models. Indirect limits on neutralino annihilation in the Sun (soft or hard annihilation)

IceCube Datasets

#Strings	Year	Run Length	$CR \mu Rate$	ν_{μ} rate	
IC1	2005	164 days	5 Hz	~0.01/day	
IC9	2006	137 days	80 Hz	~ 1.5/day	
IC22	2007	319 days	550 Hz	~ 20/day	
IC40	2008	~ 1year	1400 Hz		
IC%9	2009				
IC80	2011	10 years	1650 Hz	~ 200/day	

IceCube Point Source Searches

- 26 a priori source locations
- 60% of random datasets had a sigma higher than 3.35σ no excess seen

- Unbinned likelihood + energy information
- Hottest spot at r.a.153°, dec.11°
- p value (pre-trials): 7×10⁻⁷ (4.8σ)
- p value (post-trials) 1.34% (2.2σ)
- Consistent with background fluctuation

Flux Limits for Point Sources

Indirect search for WIMPs

No excess with IC22 90% CL limit (from Sun)

IC22: Best limit for spin-dependent cross-section

Indirect search for WIMPs

- models disfavoured by direct searches
- + models **not** disfavoured by direct searches

Full IceCube 5-years:

GRBs in AMANDA & IceCube

AMANDA

- $-v_{\mu}$ search
 - Over 400 GRBs in Northern Hemisphere
- Cascade search
 - Triggered search for 73 GRBs in both hemispheres
 - Rolling search for 2001-2003

IceCube

- 93 SWIFT bursts during IC22
- GRB080319B: brightest (optical) burst ever
 - $\sim 0.1 v_{\mu}$ events predicted in IC22 using fireball model
 - $\sim 1 \nu_{\mu}$ event predicted for equivalent burst in IC80

R03b: Supranova model WB03: Waxman-Bahcall model R03a: Choked Burst model MN06: Murase Nagataki model

IceCube will be able to detect Waxman-Bahcall or similar GRB fluxes within the next few years

IceCube construction A logistic exploit

500 Tons of material brought to South Pole

A 5 MW power plant

Unprecedented drilling capabilities

More than 50 flights

String cable 2500 m Weight ~6 tons

Future Plans

- Deep Core
 - Greatly enhances IceCube sensitivity to lower energy v's
 - Lower mass solar WIMPs
 - Atmospheric neutrinos
 - Six new strings
 - 60 high QE DOMs in clear ice
 - First string deployed 08/09,
 - Remaining strings deployed 09/10
- Multi-messenger astronomy
 - Correlations with ROTSE, AGILE, MAGIC, and LIGO
- New Technologies
 - 3 Prototype digital radio strings deployed with IceCube strings
 - 4 Hydrophones deployed above IceCube

Telescopes in the Northern Hemisphere

ANTARES 43° North 2/3 of time: Galactic Centre

0.5 π sr instantaneous common view 1.5 π sr common view per day

AMANDA/IceCube South Pole

> 25%

> 75%

The Antares collaboration

Basic detector element: storey

Deployment

<u>Data taking periods:</u>

Optical background

25/04/07

25/05/07

24/06/07

24/07/07

23/08/07

50 0

25/01/07

24/02/07

26/03/07

Optical background

(multi-) Muon Event

Example of a reconstructed down-going

Neutrino candidate

Showers from µ's can be reconstructed

Time calibrated to < 0.5 ns

ANTARES as seen by atmospheric muons

Dark Matter Search

ANTARES and KM3NeT 3 year data taking (From the Sun)

mSugra models favoured by WMAP

- 90% CL excudable by ANTARES
- 90% CL excludable by KM3NeT
- 🛑 not excludable

mSugra models disfavoured by WMAP

- 90% CL excludable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable

 $0 < m_0 < 8 \text{ TeV}$; $0 < m_{1/2} < 2 \text{ TeV}$ $0 < \tan\beta < 60$; $0 < A_0 < 3m_0$

Upper branch: Focus point region $m_0 > 2TeV; m_{1/2} > 200$ GeV to right upper corner **Middle branch**: A-annihilation tan β =50-60

Lowest branch: co-annihilation-region Low m_0 ; $m_{1/2}$ <1.5 TeV

Muon flux (km⁻² yr⁻¹)

NESTOR: Rigid Structures Forming Towers Vision: Tower(s) with12 floors Tower based detector \rightarrow 32 m diameter (titanium structures). \rightarrow 30 m between floors Dry connections \rightarrow 144 PMs per tower (recover - connect - redeploy). Up- and downward looking PMs (15"). 4000-5200 m deep. Test floor (reduced size) deployed & operated in 2003. Deployment of 4 floors planned in 2009 Ocean Bosnia & lerzegovina Monaco Bla Yugoslavia Italy Albania Spain Greece Tvrrheniar Turkey Cyprus NESTOR Algeria Leban eantennamean

NESTOR: The Delta-Berenike Platform

The NEMO Project

Exte

(Car

dept

R&C

mec

elec[.]

Simu

Example: Flexible tower

16 arms per tower,20 m arm length,

arms 40 m apart;

- 64 PMs per tower;
- Underwater connections;
 - Up- and downward-looking PMs.

NEMO Phase I: First steps

NEMO: Phase-1 Results

- Successful deployment and system test, all components functional
- Data being analysed (example: muon angular distribution)
- Some problems:
 - Missing buoyancy (tower "laying down") traced back to buoy production error
 - Junction Box: Incident at deployment, data transmission problem after some weeks, short after ~5 months → recovery & analysis → some redesign for Phase-2

Counts

Atmospheric muon angular distribution

NEMO: Phase-2

- Objective: Operation of full NEMO tower (16 floors) and Junction Box at 3400 m depth (Capo Passero site)
- Some design modifications (cabling, calibration, power system, bar length 15 m → 12 m, ...)
- Infrastructure:
 - Shore station in Portopalo di Capo Passero (→ under renovation)
 - Shore power system (→ under construction)
 - 100 km main electro-optical cable (50 kW, 20 fibres) (→ laid)
 - cable termination frame with DC/DC converter (Alcatel)

KM3NeT A research facility in the Mediterranean Sea

KM3Ne1

- A next generation neutrino telescope
- Cabled observatory for Earth and Marine sciences

40 institutes from 10 European countries

Design goals

- Substantially better sensitivity than IceCube
- > 1 km³
- Core process:
 - $v_{\mu}+N \rightarrow \mu+X$ at neutrino energies above 100 GeV
- Construction and deployment < 4 years
- Data taking period > 10 year
- Optimized for energy range 1 TeV 1 PeV
- Angular resolution < 0.1°
- Zenith angle:
 - Full acceptance for neutrinos originating from directions up to at least 10° above the horizon
 - For energies > 100 TeV angular acceptance limited only by the absorption of the Earth

Design proceeding well...

Self-unfolding structures for massive deployment

... + studies on data transmission, power distribution, time calibration and positioning, marine operations,

Several photo-sensors and optical module arrangements studied.

2 1.9 1.7 1.6 1.4 1.2 0 5 10 15 20 length (m)

Performance in terms of effective area and resolution for different configurations have been studied

Conceptual Design Report

KM3NeT

Released on April 2008

Available at www.km3net.org

Includes:

Science case Site studies Design goals Technical implementation

 Design Study funded by the 6th Framework Programme of the European Commission

KM3NeT project timeline KM3NeT NOW Mar 2008 4e02000 0^{ct 2009} Nat 201 **Design Study Preparatory Phase Construction Phase Data Taking Phase** CDR TDR funded by the 7th Framework Programme funded by the 6th Framework Programme

Conclusions

IceCube > 70% complete, finished by 2011. Approaching the km3 scale

- ANTARES completed. The largest neutrino telescope in the Northern Hemisphere. Competitive limits from 5-lines (140 days).
- KM3NeT Conceptual Design Report ready. Technical Design Report next year.
 - Supported by ESFRI, ASPERA and ASTRONET.
 - Design Study and Preparatory Phase funded respectively
 by the 6th and 7th Framework Programmes of the European
 Commission
 - Construction could start as early as 2011