Physics at Underground Labs: Dark Matter and ββ searches

Igor G. Irastorza Universidad de Zaragoza

> International Meeting on Fundamental Physics Benasque, Huesca, Spain 12th February 2009

Summary:

- The challenge of Rare Events
- Underground Labs
- Dark Matter
- Double Beta Decay
- Latest experimental status
- Future prospects

The challenge of Rare Events

- Need for large target masses
- Need for very low background → extreme radiopurity, shielding, event discrimination.
- Need for very good stability of operation (very large exposures)
- Simplicity in operation and construction is a bonus.
- Low threshold (for WIMPs)
- Good energy resolution (for DB)

All these requirements add up to a formidable challenge

> Construction & Operation underground

Deep Underground Labs

Dark Matter

- Cosmological evidences:
 - Multiple CMB observations. Last WMAP precision data adds evidence for ∧CDM cosmological model.
 - Distant Supernova Ia measurements (universe is accelerating its expansion → Dark energy).
 - Large Scale Structure (cold dark matter).
 - Nucleosynthesis, Lyman α forest, ...
- Galactic evidences:
 - Galactic rotation curves
 - Gravitational mass of galaxy clusters (oldest evidence; 1933 Zwicky)

IMFP, Benasque, Spain, 12 February 2009

What can Dark Matter be?

Baryonic matter? NO

- Dust, gas, planets, brown stars,... MACHOS (non visible conventional matter)
- Ruled out by primordial Nucleo-synthesis, and the rest of cosmological observations.
- Gravitational lensing of MACHOS \rightarrow not enough
- Non baryonic, but standard, matter? NO
 - Neutrinos would be the only candidate in the SM.
 Ruled out by cosmological observations (they would constitute Hot Dark Matter)
- Non baryonic, beyond standard? most probable

Candidates to Dark Matter

- Two main candidates attract most of the present activity in the field:
 - WIMPS Neutral Heavy Fermion
- Like the LSP of supersymmetric theories (usually the neutralino).
- WIMP stands for Weakly Interacting Massive Particle (generic name).
- Axions appear as Nambu-Goldstone bosons in the PQ spontaneous symmetry breaking.
- More generically, we speak about axion-like particles, to refer to fundamental (pseudo)scalars of similar properties without referring to a specific theory model.

AXIONS

Neutral Very light

(pseudo)scalar

Dark Matter WIMPs detection

WMP

galactic halo

DW and WIMP_ phenomenology Mass WIMP-nucleon at Earth cross section SD/SI coupling?

IMFP, Benasque, Spain, 12 February 2009

Igor G. Irastorza / U. Zaragoza

In order to do predictions of expected WIMP fluxes/signals one has to make working **hypothesis** about how WIMPs are clustered in the galactic halo

> Standard (=simpler) halo model

- Sphericity
- Isotropy
- Non-rotation
- Thermalization

Non-Standard

Relaxing one or more of the above assumptions to some degree

Must explain rotation curve of Milky Way

WIMP "wind"

WIMP detection

Effect looked for at laboratory: Elastic dispersion of WIMPs with nuclei of detector

nuclear recoil

IMFP, Benasque, Spain, 12 February 2009

Igor G. Irastorza / U. Zaragoza

WIMP detection Expected signal: rare low energy event

- Aim for large detector masses
 Great stability over time
- Great stability over time.

Annual modulation signal

IMFP, Benasque, Spain, 12 February 2009

WIMP detection mechanism

Ability to scale-up

Ability of signal identification (amount of information per event) Scintillators (only energy, statistical nuclear/electron discrimination)

DAMA, LIBRA, ANAIS, KIMS...

Noble LiquidsZEPLIN+, XENON,(nuclear/electron discrimination)WARP, ArDM,...

Hybrid bolometers (nuclear/electron discrimination) CDMS, EDELWEISS, ____ CRESST, ROSEBUD,

Gas TPCs (Recoil direction) DRIFT, DMTPC, MIMAC... → CYGNUS

Best current limits from XENON and CDMS Others: COUPP best limits for SDp

Igor G. Irastorza / U. Zaragoza

Best current limits

SI coupling

SD coupling proton

SD coupling neutron

DAMA-LIBRA

- DAMA: 100 kg of ultrapure NaI(Tl) operating for about 7 years at Gran Sasso
- Looking for annual modulation of the data
- LIBRA: 250 kg. Operated for 4 years (09/03 to 07/07), twice the exposure fo DAMA

POSITIVE CLAIM

6.3σ statistical significance went up to 8.2σ after LIBRA.
 No systematic effect found that can mimic that signal
 Modulation absent above 6 keV

DAMA Positive result: WIMP interpretation

- No systematic effect can explain it satisfactorily (neutrons, temperature,...)
- Classical WIMP excluded by other experiments, but some marginal options (non-standard set of assumptions) at low mass...
- KIMS in Korea:
 - CsI crystals

Alternative solutions.

IMFP, Benasque, Spain, 12 February 2009

- Other NaI experiments that could refute/corroborate DAMA result
- ANAIS in Canfranc:
 - Prototyping phase finished.
 - 100 kg available, being instrumented.

Noble Liquid detectors: XENON

- XENON10 at Gran Sasso: one of best exclusions up-to-date
- 4.5 kg fiducial mass, data 58.6 days, 10 events in NR zone
- Now moving to XENON100 (commissioning)

Nuclear/recoil discrimination event by event Good prospects for scaling-up Threshold? (rejection power at low energies?) Self-shielding

Also... ArDM, WARP, XMASS, ZEPLIN,...

IMFP, Benasque, Spain, 12 February 2009

Igor G. Irastorza / U. Zaragoza

Hybrid bolometers: CDMS

CDMS at Soudan

- 5 tower prototype (5 kgs of Ge) operating underground (+ several Si detectors). But only 1/3 of crystals in good shape.
- 125 kg d of exposure analysed and released in 2008
- 0 observed counts in NR band.

 Also EDELWEISS at Modane
 12 * 400 g detectors installed in EDWII now

Nuclear/recoil discrimination demonstrated down to 10-15 keVr

Last exclusion plot (2008) competes with that of XENON

Hybrid bolometers: Heat+light

ROSEBUD-II at Canfranc

- Concept first applied underground.
- Discrimination down to 8-12 keVr demonstrated.
- Only low mass prototypes tested.
- Work towards multitarget setup

CRESST-II at Gran Sasso

- Discrimination between different nuclei recoils (W and O) in same crystal.
- 20 kg d of CaWO2 reported.
 Competitive exclusion produced.
- Work ongoing towards 10kg prototype.

IMFP, Benasque, Spain, 12 February 2009

COUPP at Chicago

- The old bubble chamber concept.
- Insensitive to gamma backgrounds
- No energy info (digital response). But tuning of threshold allows energy scan

- Good sensitivity with 19F nucleus to SD pure p couplings (even in presence of high radon background)
- Good scaling-up prospects

Low WIMP mass limits

FIG. 5: Exclusion plots of spin-independent χN cross-section

- To access low mass region (< 10 GeV) → thresholds below 1 keV</p>
- Non discriminating techniques (CRESST, Texono, CoGeNT)
- Interest → models making DAMA compatible with others (now covered by CoGeNt)
- Still limits are 3.5 orders of mag higher @ 6 GeV than @ 60 GeV

WIMP signatures/features

- E_r spectrum: very poorly identificative
- Nuclear/electron discrimination (leading present techniques)
- Independence of position (important for future larger detectors)
- Rate changes:
 - Annual modulation: at reach if large target mass (DAMA,...)
 - Diurnal variation. Some attempts in the past (COSME, SIERRA GRANDE). Very large statistics needed.

Target material dependence:

- Challenging, but good progress (ROSEBUD-II, CRESST-II). Maybe at reach soon.
- Directionality:
 - Challenging. Good progress (DRIFT, NEWAGE,...). Maybe at reach soon.

Directional detectors R&D

DRIFT

DRIFT-I

- Negative Ion TPC concept proved by DRIFT-I.
- DRIFT-II: 2nd 1m3 TPC installed underground and taking data.
- Work towards increasing volume instrumented.

- Potentially the best WIMP signature
- Still clear demonstration of directionality threshold and resolution missing.
- scaling-up?
- Use of new technologies in TPCs?

The future... CYGNUS ?

IMFP, Benasque, Spain, 12 February 2009

Future of WIMP detection

- Presently (too?) many different techniques being explored. (→positive side). Time to concentrate efforts?
- What is the most promising technique (or techniques) ?
- Not a clear answer yet. But maybe is time to start evaluating and forming bigger collaborations and experiments (it is indeed being done → ILIAS)
- Protocollaborations for bigger experiments gathering all groups following a given technique? (EURECA for bolometers, ELIXIR for noble liquids, CYGNUS for direccionality... ???)
- In any case, very exciting moment for WIMP searches

But what if there are no WIMPs... but AXIONs?

- Axions are searched in 3 different contexts (different sources of axions):
 - Dark matter axions (as relics of Big Bang):
 - Axion Haloscopes (ADMX, CARRACK)
 - Axions produced in the Sun:
 - Axion Helioscopes (Kyoto, CAST)
 - Crystal detectors (SOLAX, COSME, DAMA)
 - Axions produced in the laboratory
 - "Light shinning through wall" experiments
 - Vacuum birrefringence experiments
 PVLAS, ALPS, OSQAR, BMV, ...

In general not in Underground Labs

Neutrinoless Double Beta $(0v\beta\beta)$

$\beta\beta$ decay is relevant when the nucleus cannot decay β .

- With emission of 2 ν
 (2νββ). Standard process, observed in a number of isotopes.
- With no neutrino (0vββ).
 Only possible if neutrino is massive and Majorana.
 Not yet seen(*).

Precious information on neutrinoproperties (mass scale,Majorana/Dirac nature,...)

Neutrinoless Double Beta $(0\nu\beta\beta)$

■ "Visible" energy (i.e. the 2 e⁻) spectrum:

Neutrinoless Double Beta $(0\nu\beta\beta)$

• $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$

- Lepton number violation ($\Delta L = 2$)
- Neutrino must be Majorana (equal to its antiparticle)
- Decay rate:

$$\Gamma = G |M|^2 |m_{etaeta}|^2,$$

$$m_{\beta\beta} = \sum_{i=1}^{3} m_i U_{ei}^2.$$

 e^{-}

Neutrino mass scale and $0\nu\beta\beta$

IGEX (⁷⁶Ge) <m, > < 0.33 - 1.35 eV PRD65(02)092007 NEMO-3 (¹⁰⁰Mo) <m,,> < 0.6 - 1.3 eV prL95(05)182302 & talk @ TAUP07 Region being explored by expected soon < 0.3 - 0.7 eVpresent experiments CUORICINO (130 Te) <m,> < 0.2 - 1.1 eV PRL95(05)142501 Claimed evidence (0.2-0.6 eV) PLB586(04)092007 90% CL "quasi" degeneracy $m_1 \approx m_2 \approx m_3$ 10^{-1} m_{ee} in eV Inverse hierarchy $\Delta m_{23}^2 < 0$ $\Delta m_{12}^2 = \Delta m_{atm}^2$ 10^{-2} Direct hierarchy $\Delta m_{23}^2 > 0$ $\Delta m^2_{12} = \Delta m^2_{sol}$ Cosmological 10^{-3} disfavoured 10^{-2} 10^{-3} 10^{-1} Region lightest neutrino mass in eV

KKDC Claim

- Heidelberg Moscow experiment data at Gran Sasso.
- >4 σ claimed.
- Criticisms:
 - Background not explained
 - Unknown line
 - Only signed by part of the H/M collaboration

Similar exp, IGEX @ Canfranc

IMFP, Benasque, Spain, 12 February 2009

Igor G. Irastorza / U. Zaragoza

Latest limits: CUORICINO

- Source: ¹³⁰Te. High natural abundance (33.9%). High Qvalue (2530 keV).
- Detectors: bolometers of TeO2.
 - 11 modules of 4 crystals each 5x5x5 cm3. 2 modules for 9+9 3x3x6 cm3 crystals.
- Mass: 40.7 kg TeO2. 11 kg of ¹³⁰Te

Background: 0.18 c/keV/kg/y

Total statistic ~ 15.53 kg (¹³⁰Te) × y data analyzed up to August 2007

Anticoincidence background spectrum: the bb-0n region

$$\tau_{1/2}^{0\nu} \ge 3.1 \cdot 10^{24} \ y \ (90\% \ CL)$$

$$\implies \langle m_{\nu} \rangle \leq 200 - 680 \ meV^*$$

*From C. Brofferio, Neutrino2008

Latest limits: NEMO3

- Source: 10 kg of bb isotopes (in foils). Change of isotope possible. 0vββ searched in ¹⁰⁰Mo, ⁸²Se and 2vββ in ¹¹⁶Cd, ⁹⁶Zr, ¹⁵⁰Nd, ⁴⁸Ca, ¹³⁰Te.
- Foils are sandwitched between tracking detectors (Geiger cells) plus calorimeters. B field and shielding.
- Particle ID possible: e-, e+, γ , α .
- <m_v> < 0.8 1.3 eV
- (from the ¹⁰⁰Mo result).
- Still taking data till 2010.

Current generation $\beta\beta$ experiments

- Source = target
- Good E resolution
- Good scaling-up
- BUT, modest background discri. →strong requirements on radiopurity and shielding

- Source ≠ target
- Event topology information
- BUT, moderate energy resolution and difficult scaling up

IMFP, Benasque, Spain, 12 February 2009

Summary of present situation. Latests experiments & projects

Isotope	PAST exp's (eV)	Future	Approved scale
⁷⁶ Ge	HM, IGEX (0.2 – 0.6)	GERDA, MAJORANA	40 kg
¹³⁰ Te	CUORICINO (0.2 – 0.6)	CUORE	200 kg
¹⁰⁰ Mo	NEMO3 (0.8 – 1.3)	MOON II	R&D
¹³⁶ Xe	Gothard	EXO, NEXT	200/100 kg
¹¹⁶ Cd		COBRA	R&D
¹⁵⁰ Nd		SuperNEMO, SNO+	Design study/R&D
⁸² Se	NEMO3	SuperNEMO	Design study
⁴⁸ Ca		CANDLES	R&D

GERDA: Ge diodes

...at Gran Sasso

GERD

Phase I:

- Use of existing ⁷⁶Ge-diodes from Heidelberg-Moscow and IGEX-experiments
- 8 detectors for 17.9 Kg of enrGe
- Expected Background ~ 10⁻² count/(kg·keV·y) dominated by crystal internal backg. → KKDC evidence verified in an external background-free setup.

• Phase II:

- Add new diodes (+22 kg, total: ~40 kg enrGe) able to discriminate SSE/MSE.
- Demonstration of bkg-level <10⁻³ count/(kg·keV·y)

Eventually Phase III:

- If background OK
- If KKDC-evidence not confirmed: O(1 ton) experiment by a worldwide collaboration with Majorana

- Also MAJORANA in the US.
- Possible merging of collaborations in the future (already working together in, i.e. MC sim)

CUORE: bolometers

- Source: ¹³⁰Te. High natural abundance (33.9%). High Q-value (2530 keV).
- Detectors: 988 bolometers (741 kg) of TeO2. (204 kg of ¹³⁰Te)

- Expected background: $10^{-2} - 10^{-3} \text{ c/kEV/kg/y}$ Expected sensitivity: 15 – 80 meV (depending on achieved background) Schedule: Schedule 2008: Hut construction Crystals production 2009: Clean room **External Shielding Cryostat Installation** and commissioning 2010: Detector assembly Faraday Cage Front-end & DAQ
 - 2011: Data taking

SuperNEMO: foils + tracking

- Continuation of technoloby of NEMO3
- Flexibility on choice of isotope. Focus on ⁸²Se and ¹⁵⁰Nd.
- Planar and modular design.
- Planned 20 modules x 5 kg = 100 kg.
- Topology signature.
- R&D to improve energy resolution and radiopurity of foils.

NEMO-3

Expected sensitivity ~100 meV.

		SuperioLinio
100Mo	isotope	⁸² Se - baseline (¹⁵⁰ Nd if it can be enriched)
7 kg	isotope mass M	100-200 kg
18 %	efficiency ɛ	~ 30 %
²⁰⁸ Π: < 20 μBq/kg ²¹⁴ Bi: < 300 μBq/kg	internal contaminations ²⁰⁸ Tl and ²¹⁴ Bi in the ββ foil	208 Tl $\leq 2 \mu$ Bq/kg <i>if</i> 82 Se: 214 Bi $\leq 10 \mu$ Bq/kg
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
$\begin{array}{l} T_{1/2}(0\nu\beta\beta) > 2\ x\ 10^{24}\ y \\ < m_{V} > < 0.3 0.9\ eV \end{array}$		$T_{1/2}(0νββ) > 10^{26} y$ <m<sub>v> < 0.04 - 0.11 eV</m<sub>

EXO: Xenon TPCs

• EXO experiment:

- Liquid Xe TPC
- Energy measurement by ionization + scintillation
- No single e- identification → poor background rejection
- R&D for Ba ion tagging in progress (136Xe → 136Ba++ + 2e-)
- EXO200 being commissioned at WIPP, without Ba tagging

Liquid vs. Gas

d Ba tagging can one better in gas

A new initiative: NEXT

- A Neutrino Experiment with a gas Xe TPC may:
- 1. Have all advantages of a Xe monolithic detector (like EXO)
- 2. Outdo Liquid Xe by getting topological info
- 3. Override tradicional limitation of gas TPCs (Gothard) by applying the latest developments on TPC readouts
- Competitive option for the next (ton scale) generation of experiments

Initiative pushed by spanish groups (*Barcelona, Ciemat, Santiago, Valencia, Zaragoza*) for 100 kg prototype construction in Canfranc. Interest and support by other groups. Especially *Saclay (Y. Giomataris), Berkeley (D. Nygren), Canadian groups, Coimbra,* ...

...at Canfranc

The role of E resolution @ the ton scale

The topological signature

- A gas TPC have access to the "image" of the event.
- 1 e⁻ events and 2 e⁻ events have different topologies. This can be used to reject gamma background (1 e⁻)
- Gothard demostrated that this can be done. They achieved a 96.5% efficiency in rejecting single e⁻ events. We may do better.
- A gas TPC would have an extra handle to reduce background by a factor of at least 10² (most probably more?).

NEXT

- A sensitivity down to 60 eV (for NEXT-100) and 20 eV (for NEXT-1000) is a priori reachable:
- Of course, IF
- Low enough resolution is achieved (~1% FWHM)
- Low enough backgroung after topology cuts (i.e. not background limited)
- We believe this is possible after last developments on TPC
- NEXT is on the way to demonstrate these issues (as well as other technical ones)
- Very encouraging first steps

Novel concepts on TPC readouts

Expresion of Interest to Canfranc

Expression of Interest to the Canfranc Scientific Committee

NEXT: A proposed Neutrino Experiment with a Xenon TPC

F. NOVA, F. GRAÑENA, T. LUX, F. SÁNCHEZ, Institut de Física d'Altes Energies, IFAE, Barcelona, Spain

> D. NYGREN Lawrence Berkeley, Laboratory, Berkeley, USA

I. GIOMATARIS, E. FERRER-RIBAS CEA/Saclay, Paris, France

M. BALL, J. CATALA, A. CERVERA, J. DÍAZ, A. GIL, J. J. GÓMEZ-CADENAS, C. HANSEN, J. MARTÍN-ALBO, F. MONRABAL, L. MONFREGOLA, J. MUÑOZ-VIDAL, P. NOVELLA, M. SOREL, N. YAHLALI Instituto de Física Corpuscular, IFIC, CSIC - U. Valencia, Spain

> R. BRAVO, R. PALMA, J. L. PÉREZ, R. RIPOLL U. Politécnica de Valencia, Spain

J. M. CARMONA, S. CEBRIÁN, TH. DAFNI , J. GALN, H. GÓMEZ, F. J. IGUAZ, I. G. IRASTORZA, G. LUZÓN, J. MORALES, A. RODRÍGUEZ, J. RUZ, A. TOMÁS, J. A. VILLAR U. Zaragoza, Spain

EoI approved by LSC scientific committee on April08

 Footprint of 30 m2 area requested to LSC to perform R&D and operate the prototype NEXT10

100 m2 in the hall A is anticipated for the construction of the NEXT100 detector

NEXT enjoyed funding (~4 M€) from the CONSOLIDER program as part of the CUP (Canfranc Underground Physics) proprosal, approved in the 2008 call

Séminaire IRFU, Saclay, 30/09/08

Expected NEXT roadmap

Funded by CUP CONSOLIDER					
NEXT10 phase Up to 2011	NEXT100 detector Up to 2013	Large scale Beyond 2013			
 R&D activities: E resolution, t0, radiopurity, backgrounds, etc NEXT0 prototypes at institutions Small scale (10 kg) demonstrating prototype underground NEXT10 Conceptual design of NEXT100 fixed 	 Construction of larger prototype with physics interest NEXT100 at Canfranc: - about 100 kg Continued R&D for further scaling up: - Backgrounds - Ba++ tagging ? 	Final detector (ton scale and beyond)			

Future of $0\nu\beta\beta$ searches

- Goal of present projects: ~100 kg of target mass $(<m_{\beta\beta}>=50-150 \text{ meV})$. Check KKDC claim.
- Next generation: few ton scale. Down to 10-20 meV. Fully explore inverse hierarchy mass models
- Energy resolution at the 1% FWHM level at least.
- Backgrounds down to $10^{-4} 10^{-5}$ c/keV/kg/y.
- Signal must be seen in several isotopes.
- ASPERA: 2 big experiments in Europe.
- Nice prospects for Canfranc to be well in the quest for $0\nu\beta\beta$

IMFP, Benasque, Spain, 12 February 2009

Conclusions

- Underground Labs are the needed environment for high sensitivity Rare Event Searches, like DM and DBD. They have become a *key facility in modern astroparticle physics*.
- Dark Matter:
 - Growing observational evidence (cosmological, astrophysical).
 - Suspicious results in direct (DAMA) and indirect (PAMELA, ATIC,...)
 - Many groups + increased activity. Recent WIMP limits from XENON10 and CDMS (and several others)
 - Don't forget the axion!
- Double Beta Decay:
 - Also suspicious signal here!
 - Leading experiments in Europe (CUORE, GERDA, SN) and US (EXO), are exploring complementary strategies towards the 100 kg scale.
 - NEXT in Canfranc is the most recent proposal, very promising alternative, specially for next 1-ton generation.
- Exciting times for the field!!!