Vidas medias y oscilaciones de mesones B en el experimento CDF del Tevatron

Alberto Ruiz Jimeno IFCA

13 Septiembre 2005

XXX Reunión Bienal de la Real Sociedad Española de Física Jornadas de Altas Energías

B_s Mixing

• "Boxes", en el modelo estándar causan mixing de mesones B neutros

Ingredientes

Opposite Side Trigger Side

3. *b*-Flavor Tagging

Parametrizar la dilución en la muestra lepton+track

Absoluta calibracion in totalmente reconstruídos $B_{u,d}$

1. Reconstrucción del estado final

B señales de two-track y di-muon triggers

Distribuciones de masa para $\mathcal{L} \approx 355 \text{ pb}^{-1}$

 B_s muestra

Likelihood

• Usa ajuste del "unbinned maximum likelihood"

$$\mathcal{L} = \prod_{i} P_i(\vec{x}^i), \quad \vec{x}^i = (m^i, ct^i, \sigma_{ct}^i)$$

• P_i es la Función de Densidad de Probabilidad del suceso *i*

 $P(\vec{x}) = L^{S} + L^{B} = f_{S}L_{M}^{S}(m)L_{ct}^{S}(ct,\sigma_{ct}) + f_{B}L_{M}^{B}(m)L_{ct}^{B}(ct,\sigma_{ct})$

- S = señal verdadera y desintegraciones mal reconstruídas
- B = ruido combinatorial
- L_{ct}^{S} para $B \to J/\psi K$ y $B \to D\pi$

$$L_{ct}^{S}(ct,\sigma_{ct}) = \frac{1}{N(\sigma_{ct})} \left[\frac{1}{c\tau} e^{-\frac{ct'}{c\tau}} \theta(ct') \otimes G(ct-ct',S_{ct}\sigma_{ct}) \right] \xi(ct)$$

Curva de eficiencia

• S_{ct} factor de escala por la subestimación de la resolución de ct

Curva de eficiencia de ct

Etianetado sabor-b

Trigger Side В SST Joposite Side JETC

tagger		$\mathcal{ED}^{2}\left(\% ight)$
Soft Lepton	Muon	0.70
	Electron	0.37
Jet Charge	SecVtx jet	0.36
	J_P jet	0.21
	<i>high-P</i> $_T$ jet	0.15

- Determina el sabor del b a tiempo de produccion
- *b* quark producidos en pares
- ⇒ etiquetado en Trigger Side u Opposite Side

SecVtx jet Vértice secundario J_P jet Traza desplazada high- P_T jet mayor P_T

Soft Muon Tagger Soft Electron Tagger $\overline{b} \to c\mu^+ \nu_\mu X$ $\overline{b} \to ce^+ \nu_e X$

$$\sigma_{A_{measured}} \propto \frac{1}{\sqrt{\varepsilon D^2 N}}$$

11

Resultados factores de escala

■ Nueva likelihood $L_{ct}^{s} \propto 1 \pm AS_{D} \cos(\Delta mt')$

Ajuste de *A* for varios valores de Δm , obteniendo $A(\Delta m)$ y $\sigma_A(\Delta m)$

Si los etiquetadores están calibrados, A = 1 para la frecuencia de oscilación verdadera

Excluido al 95% CL $A(\Delta m) + 1.645\sigma_A(\Delta m) < 1$

- Test conjunto de $B_d \rightarrow D^- \pi^+$ and $B_d \rightarrow J/\psi K^{*0}$
 - A = I a aprox. $\Delta m_d = 0.5 \text{ ps}^{-1}$
 - $A \sim 0$ fuera de Δm_d = 0.5 ps⁻¹

Comparar con ajuste de Δm_d (banda azul)

Amplitude Scan en Δm_s

sensitividad medida, $1.645 \sigma_A(\Delta m_s = 0.4 \text{ ps}^{-1}) = 1$

95% CL limite, **0.0** ps⁻¹ CDF Run II Preliminary L ≈ 355 pb⁻¹ 10 Amplitude 🗕 data ± 1 σ 🔺 95% CL limit 0.0 ps⁻¹ o sensitivity 0.4 ps⁻¹ ---- 1.645 σ Semileptonico + hadronico data \pm 1.645 σ data \pm 1.645 σ (stat. only) 5 Sensitividad analytical significance $7.4 \rightarrow 8.4 \text{ ps}^{-1}$ 5.1 ps⁻¹ in Run I 0 ▶ 95% CL limite $7.7 \rightarrow 7.9 \text{ ps}^{-1}$ 6.0 ps⁻¹ in Run I ${\sf B}^0_s\to {\sf D}^{\text{-}}_s\,\pi^{\scriptscriptstyle +}$ 10 15

 $\Delta m_{s} [ps^{-1}]$

Significancia analitica

$$\frac{1}{\sigma_A} = \frac{S}{\sqrt{S+B}} \sqrt{\frac{\varepsilon D^2}{2}} e^{-\frac{1}{2}\sigma_{ct}^2 \Delta m_s^2}$$

CDF+ Resultado combinado mundial

- World Average
 LEP, SLD, CDF run I
- World Average + CDF Run II

Backup

Triángulo de Unitariedad

• CKM Matrix (Wolfenstein parametrización)

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

• Unitariedad de CKM Matrix

$$V_{ud} V_{ub}^{*} + V_{cd} V_{cb}^{*} + V_{td} V_{tb}^{*} = 0$$

• Triángulo de Unitariedad

•
$$|V_{cb}| = |V_{ts}|$$

$$\left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right| = \frac{\left|V_{td}\right|}{\left|V_{ts}\right|} \times \frac{1}{\left|V_{cd}\right|}$$

- $|V_{cd}|$ conocido con 5% precision
 - 0.224 \pm 0.012
- Objeto principal del B_s mixing:
 - Precisa determinacion de un lado del triángulo de unitariedad

Sumario de la Señal

	Hadronico	Semileptonico
	(S/B)	(S/B)
$B_s: D_s \rightarrow \phi \pi$	526 ± 33 (1.8)	$4355\pm94(3.1)$
$B_s: D_s \rightarrow K^*K$	254±21 (1.7)	1750±83 (0.4)
$B_s: D_s \rightarrow \pi \pi \pi$	$116\pm18(1.0)$	$1573\pm88~(0.3)$
$B^+: D^0 \rightarrow K\pi$	~6200	~100K
$B^0: D^{*+} \rightarrow K\pi$	"satellite"	~25K
B ⁰ : D ⁺ \rightarrow K $\pi\pi$	~5600	~52K

	Hadronico (ps)	Semileptonico (ps)
$B_s:D_s \rightarrow \phi \pi$		1.51 ± 0.04 stat. only
$B_s:D_s \rightarrow K^*K$		1.38 ± 0.07 stat. only
$B_s:D_s \rightarrow \pi\pi\pi$		1.40 ± 0.09 stat. only
B _s combined	$1.59 \pm 0.10 \pm 0.02$	1.48 ± 0.03 stat. only
$B^+:D^0 \rightarrow K\pi$	$1.66 \pm 0.03 \pm 0.01$	
$B^0:D^+ \rightarrow K\pi\pi$	$1.51 \pm 0.02 \pm 0.02$	

1st error: estadístico 2nd error: sistematico

- Mundial actual
 - B⁰: (1.534±0.013) ps
 - B⁺: (1.653±0.014) ps
 - B_s: (1.469±0.059) ps

- vida media semileptonica B_s :
 - Resultados no para física
 - incertidumbre estad. x2 mejor que WA
 - necesario más trabajo respecto al fondo.

	Hadronico	Semileptonico
Δm_d	(0.503±0.063±0.015) ps ⁻¹	(0.498±0.028±0.015) ps ⁻¹
Total ED ²	(1.12±0.23)%	(1.43±0.09)%
Escala dilución		
Muon	0.83±0.10±0.03	0.93±0.04±0.03
Electron	0.79±0.14±0.04	0.98±0.06±0.03
Vertice	0.78±0.19±0.05	0.97±0.06±0.04
Traza	0.76±0.21±0.03	0.90±0.08±0.05
Jets	1.35±0.26±0.02	$1.08 \pm 0.09 \pm 0.09$

- Media mundial $\Delta m_d = 0.510 \pm 0.005 \text{ ps}^{-1}$
- Total εD^2 : 1.1—1.4%
- Factores de escal de dilución consistentes con 1
 - Hadronic0: 15~25% incertidumbre
 - Semileptonico: 5~15% incertidumbre

Incertidumbre sistemática

- La incertidumbre sistemática despreciable en comparación con la estadística
- Semileptonico
 - Ruido físico:
 - Cambia la fraccion del ruido +1 σ para su incertidumbre
 - Ruido "prompt"
 - Tomar desviación del caso de ruido inexistente
 - •Dilución del ruido "prompt"
 - •Permitir asimetría del etiquetado $\pm 10\%$
- Hadronico
- Calibrado del etiquetado de sabor
 - Limitado por estadística en la muestra de control B→Dπ
 - •Mejorará en el futuro con más estadística

Futura Prospectiva

- El resultado es la primera ronda de análisis.
- Run II CDF continuará hasta 2009
 - Objetivo a largo plazo: Observacion de la oscilación de B.
- Posibles mejoras
 - Más Luminosidad
 - Mejora de la estrategia de Trigger
 - Para alta luminosidad
 - Mejora del etiquetado de sabor
 - "Same side tagging"
 - mejora substancial en εD^2
 - Mejora de la resolución del vértic
 - Más importante cuanto mayor Δm_s
 - Incluir más canales de desintegración
 - Reducir incertidumbre sistematica:
 - Hadronico: Mejor calibrado el etiquetado de sabor
 - Semileptonico: Mejor comprensión del fondo

