CARACTERIZACIÓN ÓPTICA DEL AEROGEL DE SILICIO COMO RADIADOR DEL RICH DE AMS-02

Ana Sofía Torrentó Coello Astrofísica De Partículas -CIEMAT

EL EXPERIMENTO AMS

- Detector de partículas que se instalará en la ISS (2007) y operará durante al menos 3 años
- Objetivos científicos
 - Composición rayos cósmicos primarios
 - Antimateria
 - Materia oscura
- Colaboración internacional (más de 30 institutos de investigación)

EL DETECTOR AMS-02

- Imán superconductor
- Detector de trazas de silicio (STD)
- Contador de tiempo de vuelo (TOF)
- Detector de radiación transición (TRD)
- Detector de radiación Cerenkov (RICH)
- Calorímetro EM (ECAL)

EL RICH DE AMS-02

• Separación isotópica de núcleos ligeros $\frac{\Delta m}{m} = \frac{\Delta p}{p} \oplus \gamma^2 \frac{\Delta \beta}{\beta}$ requiere alta resolución en la velocidad (TOF $\Delta\beta/\beta \sim 3\%$, separación hasta 1 GeV/n)

Basado en el efecto Čerenkov

$$\cos \theta_C = \frac{1}{\beta n(\lambda)} \qquad \frac{dN}{dE} = \alpha Z^2 L \operatorname{sen}^2 \theta_C$$

RICH $\Delta\beta/\beta \sim 0.1$ % para Z = 1, β =1 separación hasta 10 GeV/n

ELEMENTOS DEL RICH

• Radiador

• Aerogel de silicio: n=1.05, β_{min} = 0.95

Ο NaF: n = 1.33, β_{min}= 0.75

Reflector cónico

- Plano detección
 - Fotomultiplicadores
 - Ouías de luz
 - O Apantallamiento
 - magnético

AEROGEL DE SILICIO

- Material artificial, conocido como "humo sólido"
- Red 3D de granos de silicio amorfo (diámetro~2-5 nm)
- Red abierta de poros ~20 nm
- 85%-99% de aire en volumen
- Fabricado por primera vez en 1931 por Steven Kistler
- Redescubierto en los '70: almacenamiento de oxígeno y combustible en misiles.
- Principios '80: utilización en detectores Čerenkov (DESY, CERN)

PROPIEDADES

- $\rho_{aerogel} \approx \rho_{aire}$
- Baja conductividad térmica
- Absorción de energía cinética
- Absorción de gases

 Transparente y con bajo índice de refracción *n*=1+*A*ρ *A* ~ 0.2-0.3 ρ=0.003-0.35 g/cm³ *n*=1.007-1.08

APLICACIONES

 Captura de partículas (NASA STARDUST) Aerogel magnético
 (sensores magneto-ópticos)

o nanogel

R-20 insulation with 20% light transmission now available!

TRANSLUCENT AEROGEL

Panel "U" = .05 (NFRC 100)

- Aislante térmico:
- ventanas
- misiones espaciales(Mars Pathfinder rover)

• Aerogel fotoluminiscente (detectores de O₂)

- Industria
 farmacéutica
- Filtros de aire
- Ocatálisis
- Aditivo (cosméticos, comida...)
- Mucho más …

Aerogel como radiador del RICH

- Bajo índice de refracción: aumenta la aceptancia en velocidad
- Baja densidad: minimiza la masa total del detector
- Sólido: no requiere mantenimiento
- Dos fabricantes:
 - Matsushita Electric Works Ltd. (Japón) [MEW]
 - Instituto de Catálisis Boreskov (Novosibirsk, Rusia) [BIC]

Propiedades ópticas

Determinantes en el funcionamiento del RICH

- **o** Medida de β : conocer el valor de *n* con gran precisión
- Medida de Z, eficiencia de selección: depende del número de fotones producidos → n y L (grosor)
- Propagación por el aerogel: absorción, reflexión y, sobre todo, dispersión Rayleigh (estructura interna inhomogénea), que los apartan los fotones del cono Čerenkov

- Caracterización óptica el aerogel satisface los requerimientos del RICH?
 - Medir $n \Rightarrow$ Grenoble
 - Absorción, dispersión Rayleigh \Rightarrow CIEMAT

Caracterización óptica

 λ = 635 nm

 λ = 355 nm

Medida de la transmitancia en función de λ y ajuste con la función teórica (Ley de Hunt):

 $T(\lambda) = A \exp(-CL/\lambda^4)$

A = fracción máxima de luztransmitida (=1-absorción)

C (claridad) = estimación de la dispersión Rayleigh

 Los aerogeles más transparentes tienen valores de A altos y de C bajos.

Transmitancia y uniformidad I

- Espectrofotómetro
 CARY WIN UV
- Rango 200-800 nm
- Paso 1 nm

Ajuste en 320-700 nm

Transmitancia y uniformidad II

Material	n	Dim (mm ³)	A ± ∆ A (%)	$C \pm \Delta C (\mu^4 \text{cm}^{-1})$
MEW	1.03	115×115×11	99.04 ± 0.23	0.00382 ± 0.00004
BIC		85×85×30	94.78 ± 0.27	0.00509 ± 0.00003
BIC	1.05	55×55×25	96.95 ± 0.38	0.00524 ± 0.00005

- Satisfacen los requerimientos: A ↑,C ↓
- Además, las losetas son uniformes: $\Delta A/A < 0.5\%$ $\Delta C/C < 1\%$

Envejecimiento en condiciones ambientales I

- Comprobar que durante el almacenamiento las propiedades del aerogel no cambian
- Muestra de BIC (hidrófilo) sujeta a variaciones de temperatura y humedad ambientes
- 4 días monitorizando T(λ), temperatura y humedad

Envejecimiento en condiciones ambientales II

Envejecimiento en condiciones ambientales III

- Temperatura estable: 16°C 22°C
- Grandes variaciones de humedad: 45-70 %HR
- Cambios en A y C: ∆A <1%, ∆C ± 4% pequeños ⇒ inducen una pérdida fotones < 2%</p>
- Correlación %HR \uparrow $\Delta A \downarrow$, $\Delta C \uparrow$ (empeora)
- Pequeña histéresis <2% en $C \Rightarrow$ envejecimiento

Almacenar el aerogel protegido de las variaciones de temperatura y %HR ambientales

Envejecimiento en vacío I

Averiguar si las propiedades ópticas del aerogel cambiarán durante los 3 años de operación sin mantenimiento en la ISS

• Medida de $T(\lambda)$ durante 6 meses en vacío

• Muestras: MEW 1.03, BIC 1.03, BIC 1.05

Envejecimiento en vacío II

Muestras

Rotor: 1 vuelta (6000 pasos) cada 4 horas

En cada vuelta:

- Medida del baseline (sin muestra)
- Medidas en 2 zonas de cada muestra
- Medidas de monitoring para localizar
- la posición en caso de parada

Bomba de vacío: P=1.2×10⁻⁶ mbar

Envejecimiento en vacío III

Envejecimiento en vacío IV

Envejecimiento en vacío V

Material	∆ A /año	∆C /año	∆ <i>Fot</i> /año
MEW 1.03	0.17%	14%	3%
BIC 1.03	-0.27%	7.5%	2.5%
BIC 1.05	-0.24%	8%	3%

Pendiente de las curvas y extrapolación a 1 año
La variación de A es prácticamente nula
La variación de C es mayor pero resulta en una pérdida de fotones pequeña

Conclusiones

Se ha realizado una caracterización óptica de varias muestras de aerogel, comprobando que todas satisfacen los requerimientos de detección del RICH de AMS.

- La degradación en condiciones de almacenamiento es mínima y fácilmente subsanable
- La degradación en vuelo (vacío) no afecta significativamente el buen funcionamiento del RICH (pérdida de fotones < 3%)