

Desarrollo de un Trigger de Muones de Bajo P_T con los DSPs del Sistema de Adquisición de Datos del Calorímetro Hadrónico TileCal de ATLAS

Arantxa Ruiz Martínez

Dpto. Física Atómica, Molecular y Nuclear IFIC (Instituto de Física Corpuscular CSIC/UV)

XXX Reunión Bienal de la Real Sociedad Española de Física 12 Septiembre de 2005

Contenidos

- En este trabajo se va a presentar el estudio de un algoritmo de identificación de muones de bajo momento transverso de alta eficiencia y baja tasa de sucesos de fondo desarrollado en Pisa.
- Este algoritmo utiliza la característica deposición de energía de los muones en el Calorímetro Hadrónico TileCal de ATLAS.
- Este algoritmo será próximamente implementado a segundo nivel de trigger en los procesadores digitales de señal del Read Out Driver (electrónica de *back-end* del sistema de adquisición de datos de ATLAS) y procesado en tiempo real durante el funcionamiento del experimento.

Motivaciones

- Los estados finales más útiles para la física de mesones B se caracterizan por la presencia de muones de bajo momento transverso.
- Baja eficiencia de detección de muones de bajo momento transverso ($p_T < 5 \text{ GeV/c}$) por el sistema de trigger del espectrómetro de muones de ATLAS.
- Para dar robustez al sistema de trigger de muones.

ATLAS: A Toroidal LHC ApparatuS

XXX Reunión Bienal de la RSEF 12-Sept-05

Vniver§itat d València

- Alta capacidad de rechazo de sucesos conservando la sensibilidad a procesos poco habituales.
- Basada en 3 niveles:
 - Primer Nivel (LVL1): 40 MHz \rightarrow 75 kHz
 - A nivel hardware/firmware.
 - Busca regiones potencialmente interesantes (Regions of Interest).
 - Calorímetros: e^{-} , γ , τ , jets, alta E_{T} , E_{Tmiss}
 - Muones de alto $p_{\scriptscriptstyle T}$
 - Segundo Nivel (LVL2): 75 kHz \rightarrow 1 kHz
 - Software.
 - Toma como input las RoI.
 - Algoritmos optimizados en velocidad.
 - Los sucesos aceptados por LVL2 son construidos como sucesos completos.
 - Event Filter: 1 kHz \rightarrow 100 Hz
 - Software.
 - Algoritmos de selección (offline).
 - Datos aceptados son almacenados.

XXX Reunión Bienal de la RSEF 12-Sept-05

Calorímetro Hadrónico TileCal

- El Calorímetro Hadrónico TileCal es un calorímetro de muestreo constituido por una matriz de hierro como absorbente y tejas de plástico centelleador como material activo.
- TileCal está dividido en tres secciones: el Barril Central y dos Barriles extendidos; cada sección se encuentra a su vez dividida en 64 módulos, constituyendo un total de 192 módulos y 4672 celdas.
- Las tejas están situadas en dirección perpendicular al haz de protones. La intensidad de luz en las tejas es proporcional a la energía depositada.

Deposición de Energía de un Muón

- Signatura característica de un muón en TileCal:
 - Pequeña deposición de energía \rightarrow 0 < ΔE < 3 GeV
 - Pérdida de energía prácticamente constante a lo largo de las tres capas.

A. Ruiz

Señal de un Muón en TileCal

- Estructura del Calorímetro de tejas:
 - Tres capas proyectivas con segmentación: $\Delta \Phi \times \Delta \eta = 0.1 \times 0.1$ (para las 1° y 2° capas)
- Traza de un Muón en TileCal:
 - El muón seguirá la estructura proyectiva en n

• Algunos problemas:

- El campo magnético puede curvar la trayectoria de los muones en Φ
- Proyectividad no ideal.

TILECAL CELLS

XXX Reunión Bienal de la RSEF 12-Sept-05

Algoritmo de Identificación de Muones

Descripción:

• Búsqueda de un mip en las celdas desde la capa más externa (celdas D) utilizando un rango de energía:

Eumbral, inf < E₃ < E_{umbral, sup}

 Búsqueda en la capa inmediatamente inferior (celdas BC) con la misma η y módulos Φ_i, Φ_{i±1} una señal comprendida:

Eumbral, inf < E₂ < E_{umbral, sup}

• Finalmente, búsqueda en la capa más interna (celdas A) con la misma η y módulos Φ_i , $\Phi_{i\pm 1}$, $\Phi_{i\pm 2}$ una señal:

$E_{umbral, inf} < E_1 < E_{umbral, sup}$

Si se cumplen estas tres condiciones se supone el paso de un μ por el Calorímetro.

POSIBLES PATRONES DE BÚSQUEDA

• El **Read Out Driver (ROD)**, módulo principal de la electrónica de *back-end* de TileCal, es una tarjeta 9U VME que puede leer hasta 8 fibras ópticas de la electrónica de *front-end*, correspondiente a 8 *superdrawers* del calorímetro hadrónico.

ROD DSP PU

- La DSP PU está compuesta de dos bloques, cada uno con una input FPGA, un TMS320C6414 DSP y una output FIFO externa. También cuenta con una output FPGA utilizada como interfaz con VME y TTC.
- La DSP PU tiene las siguientes funcionalidades:
 - Gestionar el flujo de datos.
 - Formateo de los datos.
 - Recepción del TTC.
 - Buffering y sincronización.
 - Procesado de los datos con algoritmos de reconstrucción.
 - Detección de errores, varios chequeos pueden ser llevados a cabo como verificar la presencia del principio y final de un suceso, la paridad de cada palabra, etc.

Los algoritmos de reconstrucción de la señal deberán procesarse en ~2 µs

• La DSP PU permite la reconstrucción de la señal digital. Es responsable de calcular la energía depositada en las celdas del calorímetro y la fase de estas señales. Adicionalmente, lleva a cabo monitoraje y formateo de los datos para el siguiente elemento en la cadena electrónica.

Adaptación del Algoritmo para su Implementación en las DSPs del ROD

- Cada TMS320C6414 DSP funcionando en modo Staging procesará los datos procedentes de dos *superdrawers*.
- <u>Limitación</u>: sólo será posible utilizar un patrón de búsqueda en el plano transverso. Los muones cuya trayectoria pase por varios módulos no podrán ser identificados.

Análisis de Datos Reales de **TestBeams**

• Distribución de Landau de la señal de un haz de muones en el calorímetro hadrónico TileCal durante los periodos de TestBeams.

Análisis de Datos de Simulación Monte Carlo

• Reconstrucción con Athena de sucesos simulados en el detector.

 $Z^0 \rightarrow \mu^+ \mu^-$

XXX Reunión Bienal de la RSEF 12-Sept-05

Puesta a punto (Commissioning)

 Detección de muones usando triggers back-to-back en el propio calorímetro.

VNIVERSITAT

D VALÈNCIA

Análisis de Muones Cósmicos

 Primeros runs de muones cósmicos tomados con el software MobiDAQ y con el ROD.

Planes futuros

- Análisis en curso:
 - de datos de Test Beams.
 - de datos de simulación Monte Carlo.
 - de datos de cósmicos en el Commissioning.
- Evaluar la posible implementación del algoritmo de trigger de muones de bajo $p_{\rm T}$ en las DSP PUs del ROD:
 - Compromiso entre alcanzar altas eficiencias (~60% obtenido en Pisa) en la detección de muones y bajas tasas de sucesos de fondo.
 - Obtener latencias aceptables para el segundo nivel de trigger de ATLAS (cálculo del tiempo de procesado del algoritmo de identificación de muones tras la reconstrucción de energía y tiempo de la señal por el algoritmo Optimal Filtering, t < 2 µs).

Referencias

[i] Studio di un algoritmo per l'identificazione di muoni a basso impulso trasverso usando il calorimetro adronico dell'esperimento ATLAS ad LHC. Andrea Dotti. Tesi di Laurea.

[ii] TileCal ROD Hardware and Software Requirements,

J. Castelo et al. ATLAS internal note ATL-TILECAL-2005-003.

[iii] ATLAS Collaboration, Tile Calorimeter Technical Design Report. CERN/LHCC/96-42 (1996).

http://ific.uv.es/tical

Arantxa.Ruiz@ific.uv.es