

Silicon sensor probing and radiation studies for the LHCb Silicon Tracker

Cristina Lois Gómez

Universidade de Santiago de Compostela

lois@physik.unizh.ch

XXX Reunión Bienal de la R.S.E.F.

On behalf of LHCb Silicon Tracker Group, ≈ 50 researchers from 6 institutes:

- Max-Planck-Institut für Kernphysik, Heidelberg
- Kiev Institute for Nuclear Research
- Laboratoire de Physique des Hautes Energies, Lausanne
- Budker Institute for Nuclear Physics, Novosibirsk
- Universidade de Santiago de Compostela
- Physik-Institut der Universität Zürich

• LHCb spectrometer and the Silicon Tracker

- LHCb spectrometer and the Silicon Tracker
- Sensor quality assurance program and results on first sensors

- LHCb spectrometer and the Silicon Tracker
- Sensor quality assurance program and results on first sensors
- Irradiation tests with IT prototype sensors

- LHCb spectrometer and the Silicon Tracker
- Sensor quality assurance program and results on first sensors
- Irradiation tests with IT prototype sensors
- Summary

- LHCb spectrometer and the Silicon Tracker
- Sensor quality assurance program and results on first sensors
- Irradiation tests with IT prototype sensors
- Summary

- LHCb spectrometer and the Silicon Tracker
- Sensor quality assurance program and results on first sensors
- Irradiation tests with IT prototype sensors
- Summary

LHCb spectrometer

• 4 detection layers

- 4 detection layers
- 14- and 7-sensor modules, several readout sectors

- 4 detection layers
- 14- and 7-sensor modules, several readout sectors
- all readout hybrids outside of acceptance

- 4 detection layers
- 14- and 7-sensor modules, several readout sectors
- all readout hybrids outside of acceptance
- silicon microstrip detectors (HPK-500)

XXX Reunión Bienal de la R.S.E.F.

- 4 detection layers
- 14- and 7-sensor modules, several readout sectors
- all readout hybrids outside of acceptance
- silicon microstrip detectors (HPK-500)
 - 500 μ m thick
 - p-on-n, single-sided
 - 183 $\mu{\rm m}$ pitch, w/p=0.25
 - dimensions $9.4 \times 9.6 \ \mathrm{cm}^2$

• 3 stations (T1-T3)

- 3 stations (T1-T3)
- 4 detection layers per station

- 3 stations (T1-T3)
- 4 detection layers per station
- 4 individual boxes per station

- 3 stations (T1-T3)
- 4 detection layers per station
- 4 individual boxes per station
- 1- and 2-sensor modules

- 3 stations (T1-T3)
- 4 detection layers per station

- 1- and 2-sensor modules
- silicon microstrip detectors (HPK-320, HPK-410)

- 3 stations (T1-T3)
- 4 detection layers per station
- 4 individual boxes per station
- 1- and 2-sensor modules
- silicon microstrip detectors (HPK-320, HPK-410)
 - 320 μm / 410 μm thick
 - p-on-n, single-sided
 - 198 $\mu{\rm m}$ pitch, w/p=0.25
 - dimensions $11\times7.8~{\rm cm}^2$

- LHCb spectrometer and the Silicon Tracker
- Sensor quality assurance program and results on first sensors
- Irradiation tests with IT prototype sensors
- Summary

• Required to ensure excellent performance of modules

- Required to ensure excellent performance of modules
- Results for first batches of sensors

- Required to ensure excellent performance of modules
- Results for first batches of sensors

Sensor type	Delivered	Total production
HPK-320	14	194
HPK-410	35	386
HPK-500	98	1000

- Required to ensure excellent performance of modules
- Results for first batches of sensors

Sensor type	Delivered	Total production
HPK-320	14	194
HPK-410	35	386
HPK-500	98	1000

• Two stages:

- Required to ensure excellent performance of modules
- Results for first batches of sensors

Sensor type	Delivered	Total production
HPK-320	14	194
HPK-410	35	386
HPK-500	98	1000

- Two stages:
 - tests performed by HPK prior to shipment

- Required to ensure excellent performance of modules
- Results for first batches of sensors

Sensor type	Delivered	Total production
HPK-320	14	194
HPK-410	35	386
HPK-500	98	1000

- Two stages:
 - tests performed by HPK prior to shipment
 - tests performed by our group after reception

• Visual inspection

- Visual inspection
- IV curves

- Visual inspection
- IV curves
- CV curves

- Visual inspection
- IV curves
- CV curves
- Metrological measurements

- Visual inspection
- IV curves
- CV curves
- Metrological measurements
- Other tests

- Visual inspection
- IV curves
- CV curves
- Metrological measurements
- Other tests

Visual inspection

- Examine sensors under microscope:
 - take note of scratches/defects
 - look for chipped edges
 - look for pad bondability/contamination
 - check serial # on scratch-pad

Visual inspection

- Examine sensors under microscope:
 - take note of scratches/defects
 - look for chipped edges
 - look for pad bondability/contamination
 - check serial # on scratch-pad
- sensors very good: no deep scratches or big defects found

+ IV curves taken up to 500 V, at T ${\sim}20~^{\circ}\text{C},~\text{RH}<30\%$

XXX Reunión Bienal de la R.S.E.F.

Ourense, 12-16 Septiembre, 2005

- IV curves taken up to 500 V, at T ${\sim}20~^{\circ}\text{C},~\text{RH}<30\%$
- Great uniformity in currents; no breakdown below 500 V

XXX Reunión Bienal de la R.S.E.F.

Ourense, 12-16 Septiembre, 2005

- Observed low currents; typically $I < 400~{\rm nA}$ at 500 V

- Observed low currents; typically $I<400~{\rm nA}$ at 500 V
- All sensors fulfill specifications

Full depletion voltage

+ CV curves taken at T ${\sim}20~^{\circ}{\rm C}$, RH <30%, $f=1~{\rm kHz}$

Full depletion voltage

- CV curves taken at T ${\sim}20~^{\circ}{\rm C}$, RH <30%, $f=1~{\rm kHz}$
- All sensors fulfill specifications

 optical metrology machine Mahr OMS 600

- optical metrology machine Mahr OMS 600
- flatness, length, width, parallelity, etc.

- optical metrology machine Mahr OMS 600
- flatness, length, width, parallelity, etc.
- All sensors very good

- optical metrology machine Mahr OMS 600
- flatness, length, width, parallelity, etc.
- All sensors very good

• Coupling capacitances

- Coupling capacitances
- Other features of leakage currents:

- Coupling capacitances
- Other features of leakage currents:
 - Dependence on mechanical strain

- Coupling capacitances
- Other features of leakage currents:
 - Dependence on mechanical strain
 - Reproducibility

- Coupling capacitances
- Other features of leakage currents:
 - Dependence on mechanical strain
 - Reproducibility
 - Stability over ${\sim}24$ h

- Coupling capacitances
- Other features of leakage currents:
 - Dependence on mechanical strain
 - Reproducibility
 - Stability over ${\sim}24$ h

Overview

- LHCb spectrometer and the Silicon Tracker
- Sensor quality assurance program and results on first sensors
- Irradiation tests with IT prototype sensors
- Summary

• 3 IT Multi-Geometry prototype sensors (5 regions; same thickness, dimensions and material characteristics as HPK-320)

- 3 IT Multi-Geometry prototype sensors (5 regions; same thickness, dimensions and material characteristics as HPK-320)
- 1 CMS-OB2 test-structure (monitor diode, mini-detector, isolated elements of strips, polysilicon, coupling capacitances,...)

• T7 irradiation facility, at PS at CERN

- T7 irradiation facility, at PS at CERN
- 24 GeV/c protons; hardness k = 0.6

- T7 irradiation facility, at PS at CERN
- 24 GeV/c protons; hardness k = 0.6
- Fluences:
 - One sensor: $1.9 \times 10^{13} \text{ p/cm}^2$ (~ 7 years innermost IT)
 - Remaining: $6.3 \times 10^{13} \text{ p/cm}^2$ (~ 20 years innermost IT)

- T7 irradiation facility, at PS at CERN
- 24 GeV/c protons; hardness k = 0.6
- Fluences:
 - One sensor: $1.9 \times 10^{13} \text{ p/cm}^2$ (~ 7 years innermost IT)
 - Remaining: $6.3 \times 10^{13} \text{ p/cm}^2$ (~ 20 years innermost IT)
- Proton fluences from aluminium foils activation measurements

- T7 irradiation facility, at PS at CERN
- 24 GeV/c protons; hardness k = 0.6
- Fluences:
 - One sensor: $1.9 \times 10^{13} \text{ p/cm}^2$ (~ 7 years innermost IT)
 - Remaining: $6.3 \times 10^{13} \text{ p/cm}^2$ (~ 20 years innermost IT)
- Proton fluences from aluminium foils activation measurements
- Annealing of 80 min at $60^{\circ}C$

Electrical characterization

• Performed at room temperature; between measurements, $-20^{\circ}\mathrm{C}$

Electrical characterization

- Performed at room temperature; between measurements, -20° C
- Measured:
 - full depletion voltages
 - leakage currents —> current related damage constant α
 - AC- and DC- strip tests: strip capacitances, inter-strip capacitances, coupling capacitances, strip currents

Full depletion voltages

• Extracted from total sensor capacitance

Sensor	Fluence (p/cm $^{-2}$)	Vdepl (V) before	Vdepl (V) after
LHCb 5	1.9×10^{13}	55	40
LHCb 8	6.3×10^{13}	55	130
LHCb 1	6.3×10^{13}	55	130
Diode	6.3×10^{13}	120	115

Full depletion voltages

• Extracted from total sensor capacitance

Sensor	Fluence (p/cm $^{-2}$)	Vdepl (V) before	Vdepl (V) after
LHCb 5	1.9×10^{13}	55	40
LHCb 8	6.3×10^{13}	55	130
LHCb 1	6.3×10^{13}	55	130
Diode	6.3×10^{13}	120	115

 \Rightarrow After lower fluence, depletion voltage lower than initial

• After irradiation $\Delta I = \alpha V \phi$

- After irradiation $\Delta I = \alpha V \phi$
- Calculate the current related damage constant $\boldsymbol{\alpha}$

- After irradiation $\Delta I = \alpha V \phi$
- $\bullet\,$ Calculate the current related damage constant $\alpha\,$
- Use I at $V_{bias} = V_{depl.}$, normalized to $T = 20^{\circ}$ C

- After irradiation $\Delta I = \alpha V \phi$
- Calculate the current related damage constant $\boldsymbol{\alpha}$
- Use I at $V_{bias} = V_{depl.}$, normalized to $T = 20^{\circ}$ C
- Obtained for 24 GeV proton, $\overline{\alpha}=2.78\times 10^{-17}~{\rm A/cm}$

- After irradiation $\Delta I = \alpha V \phi$
- Calculate the current related damage constant $\boldsymbol{\alpha}$
- Use I at $V_{bias} = V_{depl.}$, normalized to $T = 20^{\circ}$ C
- Obtained for 24 GeV proton, $\overline{\alpha}=2.78\times 10^{-17}~{\rm A/cm}$
- Normalizing fluence to equivalent 1 MeV n, \rightarrow hardness factor $k_{lpha} = 0.61$

Strip tests

- total strip capacitances
- inter-strip capacitances
- coupling capacitances
 - \longrightarrow essentially unchanged after irradiation

Overview

- LHCb spectrometer and the Silicon Tracker
- Sensor quality assurance program and results on first sensors
- Irradiation tests with IT prototype sensors
- Summary

Summary

- LHCb Silicon Tracker uses silicon micro-strip detectors
 - $\sim 200~\mu{\rm m}$ pitch
 - readout strips up to 38 cm in length

Summary

- LHCb Silicon Tracker uses silicon micro-strip detectors
 - $\sim 200~\mu{\rm m}$ pitch
 - readout strips up to 38 cm in length
- Presented QA program
 - results on first sensors very satisfactory
 - low leakage currents; electrical parameters within specification

Summary

- LHCb Silicon Tracker uses silicon micro-strip detectors
 - $\sim 200~\mu{\rm m}$ pitch
 - readout strips up to 38 cm in length
- Presented QA program
 - results on first sensors very satisfactory
 - low leakage currents; electrical parameters within specification
- $\bullet\,$ Performed irradiation on IT prototype sensors with 24 GeV/c protons
 - depletion at $50~\mathrm{V}$ after equivalent to 7 LHCb years in IT
 - current related damage constant $\alpha = 2.78 \times 10^{-17}$ A/cm, hardness factor $k_{\alpha} = 0.61$
 - strip capacitances, coupling capacitances: unchanged after irradiation

Back-slides

Reproducibility IV curves

No chuck vacuum effect

Depletion voltages vs. Hamburg model

Leakage current:

$$I(T) = I(T_m) \left(\frac{T}{T_m}\right)^2 exp\left(-\frac{E_g}{2k_B}\left\{\frac{1}{T} - \frac{1}{T_m}\right\}\right)$$

- $E_g = 1.12 \text{ eV}$ band gap energy in silicon at room temperature
- k_B Boltzmann constant
- T and T_m in K
- relation true if current caused by generation current in the bulk material (case after irradiation)

XXX Reunión Bienal de la R.S.E.F.

References

- LHCb Technical Design Report, Reoptimized Detector Design and Performance. CERN/LHCC 2003-030.
- LHCb Inner Tracker Technical Design Report. CERN/LHCC 2002-029.
- O. Steinkamp. *Silicon strip detectors for the LHCb experiment*. Nucl. Instr. and Meth. A 541 (2005) 83.
- F. Lehner, C. Lois and H. Voss. *Measurements on irradiated silicon sensor prototypes for the Inner Tracker of LHCb*. LHCb note 2004-104.
- G. Baumann et al., *Pre-series Sensor Qualification for the Inner Tracker of LHCb*. LHCb note in preparation.

Table of Contents

overview lhcb tt it sensors sensors visual IV IV cv metrology otherTests irrad irradII irradIII summary reproducibility noChuckVacEffect HamburgModel IvsT

XXX Reunión Bienal de la R.S.E.F.