

Centro de Investigaciones

VME_PATCH **User Manual**

Version 3.0

C. Fernández Bedoya, A. Navarro Tobar, J. Sastre Álvaro

CIEMAT

October 30th, 2013

INDEX

1	VME_PATCH BOARD	5
2	VME_PATCH INTERFACES	6
3	VME_PATCH ADDRESSING	8
4	VME_PATCH BOARD REGISTERS	8
5	ACCESSING THE CUOF MEZZANINE	. 12

1 <u>VME_PATCH BOARD</u>

The goal of this board is to perform the bridge between the VME controller of the ROS and TSC crates (usually Linco VME controller) and the OFCU and TSC_rear modules.

Figure 1: Front image of the VME_PATCH board.

Figure 2: Back image of the VME_PATCH board.

Figure 3: Image of the VME_PATCH front pannel

2 <u>VME_PATCH INTERFACES</u>

The front panel has:

• DA-15 male connector that contains four I^2C buses with the following mapping:

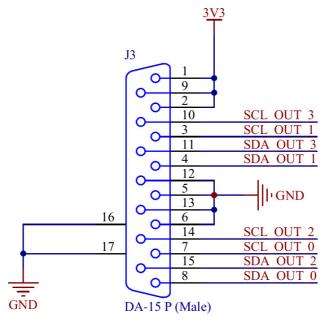


Figure 4: I²C DA-15 P male connector

Note that the corresponding DA-15 female socket must have the pin-out mirrored:

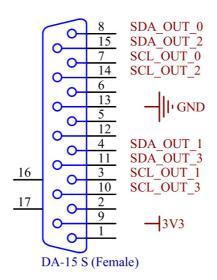


Figure 5: I²C DA-15 S female socket

- First row of leds. From left to right:
 - ON = 1.2 V ok [D5 = 1.2 V]
 - \circ ON = 3.3 V ok [D6 = 3.5 V]
- Second row of leds. From left to right:
 - ON = All signal detects of the OFCU boards in the crate are OK [D1 = SD OK]
 - ON = VME access data acknowledge of the VME_patch [D3 = DTACK]
 - ON = VME_patch FPGA properly programmed (done) [D4 = DONE]

The backplane connections contain a J1 VME standard connector and a custom J2 to connect to the J2_OFCU backplane. The J2 mapping is (the signals in grey do not exist at present):

VME PATCH	А	В	С
1	Sp_indiv_1	V_5	SD_1_1
2	Sp_indiv_2	GND	SD_1_2
3	Sp_indiv_3	SD_10_1	SD_1_3
4	Sp_indiv_4	SD_10_2	SD_2_1
5	Sp_indiv_5	SD_10_3	SD_2_2
6	GND	SD_11_1	SD_2_3
7	Sp_indiv_6	SD_11_2	SD_3_1
8	Sp_indiv_7	SD_11_3	SD_3_2
9	Sp_indiv_8	SD_12_1	SD_3_3
10	Sp_indiv_9	SD_12_2	SD_4_1
11	Sp_indiv_10	SD_12_3	SD_4_2
12	Board_sel1	GND	SD_4_3
13	Board_sel2	V_5	SD_5_1
14	Board_sel3	Reset	SD_5_2 SD_5_3
15	Board_sel4	ADD_0	SD_5_3
16	Board_sel5	ADD_1	SD_6_1
17	Board_sel6	ADD_2	SD_6_2
18	V_5	ADD_3	V_5
19	GND	Spare_5	GND
20	Board_sel7	Write_J2	SD_6_3
21	Board_sel8	Sp_indiv_11	SD_7_1
22	Board_sel9	GND	SD_7_2
23	Board_sel10	Dout_0	SD_7_3
24	Board_sel11	Dout_1	SD_8_1
25	Board_sel12	Dout_2	SD_8_2
26	V_5	Dout 3	V_5
27	GND	Dout_4	GND
28	Spare_0	Dout_5	SD_8_3
29	Spare_1	Dout_6	SD_9_1
30	Spare_2	Dout_7	SD_9_2
31	Spare_3	GND	SD_9_3
32	Spare_4	V_5	Sp_indiv_12

Figure 6: J2 VME_patch mapping

The schematics of the VME_PATCH board can be found here:

http://wwwae.ciemat.es/cms/DTE/iupgrade.htm#VMEpatch

3 <u>VME_PATCH ADDRESSING</u>

The VME_PATCH board supports short non-privileged A16 D16 (Word) VME access. It translates it to the OFCU boards by means of a custom parallel protocol.

The A16 base address is selected with switch SW13, (A15-A10). The address mapping for the registers of the different functional blocks is what follows:

A16 Base Address (A15 – A10)	Functional block
VME_PATCH + 0x00 a 0x3E	VME_PATCH
VME_PATCH + 0x40 a 0x5E	OFCU slot 1
VME_PATCH + 0x80 a 0x9E	OFCU slot 2
VME_PATCH + 0xC0 a 0xDE	OFCU slot 3
VME_PATCH + 0x100 a 0x11E	OFCU slot 4
VME_PATCH + 0x140 a 0x15E	OFCU slot 5
VME_PATCH + 0x180 a 0x19E	OFCU slot 6
VME_PATCH + 0x1C0 a 0x1DE	OFCU slot 7
VME_PATCH + 0x200 a 0x21E	OFCU slot 8
VME_PATCH + 0x240 a 0x25E	OFCU slot 9
VME_PATCH + 0x280 a 0x29E	OFCU slot 10
VME_PATCH + 0x2C0 a 0x2DE	OFCU slot 11
VME_PATCH + 0x300 a 0x31E	OFCU slot 12

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						J2_3	J2_2	J2_1	J2_0						Vme BYTE

4 <u>VME_PATCH BOARD REGISTERS</u>

<u>Reg1_vme (VME_PATCH + 0x00)</u>

Default value = 0x0

Reset by a local_reset.

Bits	description	acc	
0-2	Dummy	R/W	
3	Lights SD LED	R/W	Turns on the SD led in the front panel of the
			VME_patch even if the SD signals are not correct
4	Read _J2	R/W	Sets the line Read_J2
5	Spare _J2	R/W	Sets the line Spare _J2
6	OFCU Reset	W	=1 reset (100 ns pulse). A reset will be sent
			sequentially to each OFCU.
7	Local_reset	W	=1 reset of the VME_PATCH board only

All the registers from VME_PATCH are reset by a local reset. A VME sys-reset will force also a reset in the VME_PATCH and in the OFCU boards.

Interruptions_Set (VME_PATCH + 0x02)

Default value = 0x0 Reset by a local_reset.

Bits	description	acc	
0	enable test interrupt	R/W	= 1 an interruption will be generated
1	interrupt requested	R	= 1 an interruption from the VME_PATCH has
			occurred.
2-7	Dummy	R/W	

Interruptions_Vector (VME_PATCH + 0x04)

Default = 0x0Reset by a local_reset.

Bits	Description	acc	
0-7	interrupt vector	R/W	

Interrupt Level is always 7

<u>SCL (VME_PATCH + 0x06)</u>

Default = 0x1Reset by a local_reset.

Bits	Description	acc	
0	SCL write	W	SCL signal. The I2C bus you are
			addressing is selected in register I2C
			select.
1	SCL read	R	SCL signal registered each clock
			cycle. The I2C bus you are addressing
			is selected in register I2C select
			(0x0A)
2-7	'0'	-	

SDA (VME_PATCH + 0x08)

Default = 0x1Reset by a local_reset.

Bits	Description	acc	
0	SDA write	W	SDA signal. The I2C bus you are addressing is selected in register I2C select (0x0A)
1	SDA read	R	SDA signal registered each clock cycle. The I2C bus you are addressing is selected in register I2C select (0x0A)
2-7	·0'	-	

$\underline{I^2C SELECT (VME_PATCH + 0x0A)}$

Default = 0x0 Reset by a local_reset.

Bits	Description	acc
0	A0 – selection of I^2C bus to address	R/W
1-3	-	-
4	A1 – selection of I^2C bus to address	R/W
5-7		-

0x00 => SDA0, SCL0 0x01 => SDA1, SCL1 0x10 => SDA2, SCL2 0x11 => SDA3, SCL3

<u>SIGNAL DETECT OFCU 1-2 (VME_PATCH + 0x0C)</u>

Default = 0x0 Reset by a local_reset.

bits	Description	acc
0	Signal Detect OFCU=1, ROS ch 0-11 MB1and MB2	R
1	Signal Detect OFCU=1, ROS ch 12-23 MB3and MB4	R
2	Signal Detect OFCU=1, ROS ch 24 (single) MB4-b last	R
3	Signal Detect OFCU=2, ROS ch 0-11 MB1and MB2	R
4	Signal Detect OFCU=2, ROS ch 12-23 MB3and MB4	R
5	Signal Detect OFCU=2, ROS ch 24 (single) MB4-b last	R
6-7	-	

SIGNAL DETECT

= 1 MEANS ALL OK (OFCU board connected, Avagos in, signal received)=0 MEANS THERE IS A CHANNEL THAT IS IN NOT RECIVING SIGNAL

SIGNAL DETECT OFCU 3-4 (VME_PATCH + 0x0E)

Default = 0x0 Reset by a local_reset.

bits	Description	acc
0	Signal Detect OFCU=3, ROS ch 0-11 MB1and MB2	R
1	Signal Detect OFCU=3, ROS ch 12-23 MB3and MB4	R
2	Signal Detect OFCU=3, ROS ch 24 (single) MB4-b last	R
3	Signal Detect OFCU=4, ROS ch 0-11 MB1and MB2	R
4	Signal Detect OFCU=4, ROS ch 12-23 MB3and MB4	R
5	Signal Detect OFCU=4, ROS ch 24 (single) MB4-b last	R
6-7	-	

SIGNAL DETECT OFCU 5-6 (VME_PATCH + 0x10)

Default = 0x0

Reset by a local_reset.

bits	Description	acc
0	Signal Detect OFCU=5, ROS ch 0-11 MB1and MB2	R
1	Signal Detect OFCU=5, ROS ch 12-23 MB3and MB4	R

2	Signal Detect OFCU=5, ROS ch 24 (single) MB4-b last	R
3	Signal Detect OFCU=6, ROS ch 0-11 MB1and MB2	R
4	Signal Detect OFCU=6, ROS ch 12-23 MB3and MB4	R
5	Signal Detect OFCU=6, ROS ch 24 (single) MB4-b last	R
6-7	-	

<u>SIGNAL DETECT OFCU 7-8 (VME_PATCH + 0x12)</u>

Default = 0x0 Reset by a local_reset.

bits	Description	acc
0	Signal Detect OFCU=7, ROS ch 0-11 MB1and MB2	R
1	Signal Detect OFCU=7, ROS ch 12-23 MB3and MB4	R
2	Signal Detect OFCU=7, ROS ch 24 (single) MB4-b last	R
3	Signal Detect OFCU=8, ROS ch 0-11 MB1and MB2	R
4	Signal Detect OFCU=8, ROS ch 12-23 MB3and MB4	R
5	Signal Detect OFCU=8, ROS ch 24 (single) MB4-b last	R
6-7	-	

SIGNAL DETECT OFCU 9-10 (VME_PATCH + 0x14)

Default = 0x0 Reset by a local_reset.

bits	Description	acc
0	Signal Detect OFCU=9, ROS ch 0-11 MB1and MB2	R
1	Signal Detect OFCU=9, ROS ch 12-23 MB3and MB4	R
2	Signal Detect OFCU=9, ROS ch 24 (single) MB4-b last	R
3	Signal Detect OFCU=10, ROS ch 0-11 MB1and MB2	R
4	Signal Detect OFCU=10, ROS ch 12-23 MB3and MB4	R
5	Signal Detect OFCU=10, ROS ch 24 (single) MB4-b last	R
6-7	-	

SIGNAL DETECT OFCU 11-12 (VME PATCH + 0x16)

Default = 0x0 Reset by a local_reset.

bits	Description	acc
0	Signal Detect OFCU=11, ROS ch 0-11 MB1and MB2	R
1	Signal Detect OFCU=11, ROS ch 12-23 MB3and MB4	R
2	Signal Detect OFCU=11, ROS ch 24 (single) MB4-b last	R
3	Signal Detect OFCU=12, ROS ch 0-11 MB1and MB2	R
4	Signal Detect OFCU=12, ROS ch 12-23 MB3and MB4	R
5	Signal Detect OFCU=12, ROS ch 24 (single) MB4-b last	R
6-7	-	

<u>OFCU_RESET (VME_PATCH + 0x18)</u>

Default = 0x0Reset by a local_reset.

bits	Description	acc
0-7	OFCU Slot to which a reset wants to be issued (75 ns	R/W
	reset pulse)	

The number you write here is the OFCU slot (i.e. sector) to which a reset will be sent. 0x1 to reset OFCU from sector 1, 0x5 to reset OFCU sector 5, etc.

5 ACCESSING THE CUOF MEZZANINE

The VME_PATCH board can be used to access the CUOF mezzanine for configuration through the DA-15 connector in the front of the board.

You need to connect a cable like the one in the picture to each of the individual pseudo- I^2C channels. Alternatively, you can make an OR of all the lines from the 8 laser drivers in the CUOF mezzanine and access all of them simultaneously (clearly, the same bias/modulation parameters will be configured for all of the laser drivers).

Writing in the I²C_SELECT register of the VME_PATCH you can choose which of the 4^{th} channels is going to be used for the I²C transmission. In addition writing in the SDA and SCL registers, you can send the appropriate commands. An example of the software to be used can be found here:

http://wwwae.ciemat.es/cms/DTE/iupgrade.htm#VMEpatch