Light neutrinos in cosmology

Sergio Pastor (IFIC Valencia)

CIEMAT Madrid, 3 Nov 2010

Picture from Hubble ST

Light neutrinos in cosmology

Sergio Pastor (IFIC Valencia)

V

CIEMAT Madrid, 3 Nov 2010

Picture from Hubble ST

Outline

Introduction: the Cosmic Neutrino Background

The radiation content of the Universe

Neutrinos as Dark Matter

Cosmological bounds on $\Sigma m_{\!_{\rm V}}$

Introduction: the Cosmic Neutrino Background

$$\mathcal{L}_{\rm SM} = -2\sqrt{2}G_F \left\{ \left(\bar{\nu}_e \gamma^{\mu} L \nu_e \right) (\bar{e}\gamma_{\mu} L e) + \sum_{P,\alpha} g_P \left(\bar{\nu}_{\alpha} \gamma^{\mu} L \nu_{\alpha} \right) (\bar{e}\gamma_{\mu} P e) \right\}$$

$$P = L, R = (1 \mp \gamma_5)/2$$
 $g_L = -\frac{1}{2} + \sin^2 \theta_W$ and $g_R = \sin^2 \theta_W$

Neutrino decoupling

As the Universe expands, particle densities are diluted and temperatures fall. Weak interactions become ineffective to keep neutrinos in good thermal contact with the e.m. plasma

Rough, but quite accurate estimate of the decoupling temperature

Rate of weak processes ~ Hubble expansion rate

$$\Gamma_{w} \approx \sigma_{w} |v| n, H^{2} = \frac{8\pi\rho_{R}}{3M_{p}^{2}} \rightarrow G_{F}^{2}T^{5} \approx \sqrt{\frac{8\pi\rho_{R}}{3M_{p}^{2}}} \rightarrow T_{dec}^{v} \approx 1 MeV$$

Neutrino and Photon (CMB) temperatures

Neutrino and Photon (CMB) temperatures

Neutrino cosmology is interesting because Relic neutrinos are very abundant:

• The CNB contributes to radiation at early times and to matter at late times (info on the number of neutrinos and their masses)

 Cosmological observables can be used to test standard or nonstandard neutrino properties

The Cosmic Neutrino Background

Neutrinos decoupled at T~MeV, keeping a $f_v(p,T) = \frac{1}{e^{p/T_v} + 1}$

• Number density

$$n_{v} = \int \frac{d^{3}p}{(2\pi)^{3}} f_{v}(p, T_{v}) = \frac{3}{11} n_{v} = \frac{6\zeta(3)}{11\pi^{2}} T_{CMB}^{3}$$

Energy density

$$\rho_{v_i} = \int \sqrt{p^2 + m_{v_i}^2} \frac{d^3 p}{(2\pi)^3} f_v(p, T_v) \rightarrow \begin{cases} \frac{7\pi^2}{120} \left(\frac{4}{11}\right)^{4/3} T_{CMB}^4 & \text{Massless} \\ m_{v_i} n_v & \text{Massive } m_v \text{>>T} \end{cases}$$

The Cosmic Neutrino Background

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species
$$f_v(p,T) = \frac{1}{e^{p/T_v}}$$

• Number density

At present $112(v + \overline{v}) \text{ cm}^{-3}$ per flavour

Energy density

$$\Omega_{
u}h^2 \simeq 1.7 imes 10^{-5}$$
 Massless

 $\frac{\sum_i m_{\nu_i}}{94.1 \text{ eV}}$

Contribution to the energy density of the Universe

$$\Omega_{\nu}h^2 =$$

Massive m,>>T

Evolution of the background densities: 1 MeV \rightarrow now

The radiation content of the Universe (N_{eff})

Relativistic particles in the Universe

At $T >> m_e$, the radiation content of the Universe is

$$\rho_{\rm r} = \rho_{\gamma} + \rho_{\nu} = \frac{\pi^2}{15}T^4 + 3 \times \frac{7}{8} \times \frac{\pi^2}{15}T^4 = \left[1 + \frac{7}{8} \times 3\right]\rho_{\gamma}$$

At $T < m_e$, the radiation content of the Universe is

$$\rho_{\rm r} = \rho_{\gamma} + \rho_{\nu} = \frac{\pi^2}{15} T_{\gamma}^4 + 3 \times \frac{7}{8} \times \frac{\pi^2}{15} T_{\nu}^4 = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} 3 \right] \rho_{\gamma}$$

$$\rho_{\rm r} = \rho_{\gamma} + \rho_{\nu} = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right] \rho_{\gamma} \frac{T_{\nu}^4}{T_{\gamma}^4}$$

Relativistic particles in the Universe

At $T < m_e$, the radiation content of the Universe is

$$\rho_{\rm r} = \rho_{\gamma} + \rho_{\nu} + \rho_x = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\rm eff}\right] \rho_{\gamma}$$

Effective number of relativistic neutrino species Traditional parametrization of the energy density stored in relativistic particles # of flavour neutrinos: $N_{\nu} = 2.984 \pm 0.008$ (LEP data)

Constraints on N_{eff} from Primordial Nucleosynthesis and other cosmological obsevables (CMB+LSS)

 $G_{\rm N} = 6.7087 \pm 0.0010 \cdot 10^{-39} \, GeV^{-2}$.

Effect of neutrinos on BBN

1. N_{eff} fixes the expansion rate during BBN

2. Direct effect of electron neutrinos and antineutrinos on the n-p reactions

$$\nu_e + n \longleftrightarrow p + e^- \quad e^+ + n \longleftrightarrow p + \bar{\nu}_e$$

Extra relativistic particles

Extra radiation: How to get N_{eff} > 3?

Neutrinos in non-standard scenarios: NS Interactions, sterile neutrinos (totally or partially thermalized), relic neutrino asymmetries

Other relativistic particles: scalars, pseudoscalars, relativistic decay products of heavy particles...

Neutrinos as Dark Matter

Neutrino masses

Possible neutrino mass hierarchy patterns

$$\nu_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} \nu_{iL}, \quad (\alpha = e, \mu, \tau)$$

Present evidences for flavour neutrino oscillations: data on solar, atmospheric, reactor and accelerator neutrinos

Neutrino masses

Data on flavour oscillations do not fix the absolute scale of neutrino masses

Neutrino masses

Data on flavour oscillations do not fix the absolute scale of neutrino masses

Evolution of the background densities: 1 MeV \rightarrow now

The Cosmic Neutrino Background

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species
$$f_v(p,T) = \frac{1}{e^{p/T_v}}$$

• Number density

At present $112(v + \overline{v}) \text{ cm}^{-3}$ per flavour

Energy density

Neutrinos as Dark Matter

Neutrinos are natural DM candidates

$$\Omega_{v}h^{2} = \frac{\sum_{i}m_{i}}{93.2 \text{ eV}} \quad \Omega_{v} < 1 \rightarrow \sum_{i}m_{i} < 46 \text{ eV}$$

$$\Omega_{v} < \Omega_{m} \approx 0.3 \rightarrow \sum_{i}m_{i} < 15 \text{ eV}$$

 They stream freely until non-relativistic (collisionless phase mixing)
 Neutrinos are HOT Dark Matter

 First structures to be formed when Universe became matter -dominated are very large

Ruled out by structure formation CDM

Neutrinos as Hot Dark Matter

Massive Neutrinos can still be subdominant DM: limits on m_{ν} from Structure Formation (combined with other cosmological data)

baryons and CDM (matter) experience gravitational clustering

baryons and CDM (matter) experience gravitational clustering

baryons and CDM (matter) experience gravitational clustering

baryons and CDM (matter) experience gravitational clustering

growth of $\delta \rho / \rho$ (k,t) fixed by gravity vs expansion balance

 $\Rightarrow \delta
ho /
ho$ a a

neutrinos experience free-streaming with v = c or /m

baryons and CDM (matter) experience gravitational clustering

neutrinos experience free-streaming with v = c or /m

neutrinos

experience

free-streaming

with

 $v = c \text{ or } \langle p \rangle / m$

baryons and CDM (matter) experience gravitational clustering

neutrinos cannot cluster below a diffusion length

 $\lambda = \int v dt < \int c dt$

neutrinos experience free-streaming with v = c or /m

for $(2\pi/k) < \lambda$, free-streaming supresses growth of structures during MD

with $f_v = \rho_v / \rho_m \approx (\Sigma m_v) / (15 \text{ eV})$

Neutrinos as Hot Dark Matter

Massive Neutrinos can still be subdominant DM: limits on m_v from Structure Formation (combined with other cosmological data)

Z=32.33

S. Hannestad, Cosmology Group, Univ. Aarhus

Power Spectrum of density fluctuations

Neutrinos as Hot Dark Matter: effect on P(k)

Massive Neutrinos can still be subdominant DM: limits on m_v from Structure Formation (combined with other cosmological data)

• Effect of Massive Neutrinos: suppression of Power at small scales

Lesgourgues & SP, Phys. Rep. 429 (2006) 307

CMB TT DATA

Effect of massive neutrinos on the CMB spectra

1) CMB spectrum essentially unchanged if neutrinos become NR AFTER photon decoupling (z_{rec} ~1089)

$$1 + z_{\rm nr} = \frac{T_{\nu,\rm nr}}{T_{\nu,0}} \\ = 1.99 \times 10^3 (m_{\nu}/{\rm eV}) \\ = 6.24 \times 10^4 \omega_{\nu},$$

Neutrinos become NR BEFORE recombination if:

$$\omega_{v} \ge 0.017 \implies \sum_{i} m_{i} \ge 1.6 \text{ eV}$$

More details including effects of neutrino mass on "reduced CMB observables" in Ichikawa et al, PRD 71 (2005) 043001

Effect of massive neutrinos on the CMB spectra

- 1) CMB spectrum essentially unchanged if neutrinos become NR AFTER photon decoupling.
- 2) Impact on CMB spectra is indirect: non-zero Ω_v modifies the background evolution (change in equality time)

Ex: in a flat universe, keep $\Omega_{\Lambda} + \Omega_{cdm} + \Omega_{b} + \Omega_{v} = 1$ constant

Effect of massive neutrinos on the CMB spectra

Problem with parameter degeneracies: change in other cosmological parameters can mimic the effect of nu masses

Cosmological bounds on $\Sigma m_{\!_{\rm V}}$

Cosmological bounds on neutrino mass(es)

A unique cosmological bound on m, DOES NOT exist!

Different analyses have found upper bounds on neutrino masses, since they depend on

- The combination of cosmological data used
- The assumed cosmological model: number of parameters (problem of parameter degeneracies)
- The properties of relic neutrinos

Cosmological Data

• CMB Temperature: WMAP plus data from other experiments at large multipoles (CBI, ACBAR, VSA...)

- CMB Polarization: WMAP,...
- Large Scale Structure:

* Galaxy Clustering (2dF,SDSS)

* Bias (Galaxy, ...): Amplitude of the Matter P(k) (SDSS, σ_8)

* Lyman-a forest: independent measurement of power on small scales

* Baryon acoustic oscillations (SDSS)

Bounds on parameters from other data: SNIa ($\Omega_{\rm m}$), HST (h), ...

Cosmological Parameters: example

Parameter	Meaning	Status		
τ	Reionization optical depth	Not optional		
ω_b	Baryon density	Not optional		
ω_d	Dark matter density	Not optional		
f_{ν}	Dark matter neutrino fraction	Well motivated		
Ω_{Λ}	Dark energy density	Not optional		
w	Dark energy equation of state	Worth testing		
Ω_k	Spatial curvature	Worth testing		
A_{s}	Scalar fluctuation amplitude	Not optional		
n_s	Scalar spectral index	Well motivated		
α	Running of spectral index	Worth testing		
r	Tensor-to-scalar ratio	Well motivated		
n _t	Tensor spectral index	Well motivated		
Ь	Galaxy bias factor	Not optional		

SDSS Coll, PRD 69 (2004) 103501

Current cosmological bounds on neutrino masses

González-García et al., JCAP 08 (2010) 117

Current cosmological bounds on neutrino masses

	CMB+HO+SN+BAO				CMB+HO+SN+LSS-PS		
	best	1σ	95% CL	best	1σ	95% CL	
$H_0 \ {\rm km/s/Mpc}$	76.2	$^{+3.0}_{-2.8}$	$^{+5.7}_{-5.6}$	74.4	$^{+2.8}_{-2.9}$	$^{+5.6}_{-5.6}$	
$\Omega_b h^2 \times 100$	2.205	$^{+0.057}_{-0.050}$	$^{+0.103}_{-0.105}$	2.239	$^{+0.059}_{-0.046}$	$^{+0.095}_{-0.108}$	
$\Omega_c h^2$	0.131	$^{+0.018}_{-0.013}$	$+0.036 \\ -0.023$	0.128	$^{+0.024}_{-0.009}$	$^{+0.042}_{-0.018}$	
n_S	0.961	$^{+0.021}_{-0.015}$	$^{+0.040}_{-0.030}$	0.971	$^{+0.019}_{-0.017}$	$^{+0.037}_{-0.033}$	
au	0.086	$^{+0.011}_{-0.015}$	$+0.026 \\ -0.028$	0.083	$^{+0.016}_{-0.011}$	$+0.030 \\ -0.023$	
σ_8	0.787	$^{+0.091}_{-0.073}$	$^{+0.135}_{-0.179}$	0.824	$^{+0.051}_{-0.048}$	$^{+0.097}_{-0.105}$	
Ω_k	-0.006	$^{+0.010}_{-0.009}$	$-0.022 \leq \Omega_k \leq 0.016$	-0.011	$^{+0.008}_{-0.009}$	$-0.028 \leq \Omega_k \leq 0.007$	
ω	-1.17	$^{+0.19}_{-0.21}$	$-0.62 \leq \omega + 1 \leq 0.18$	-1.12	$^{+0.21}_{-0.20}$	$-0.57 \le \omega + 1 \le 0.26$	
$\Delta N_{ m rel}$	1.2	$^{+1.1}_{-0.61}$	$0.08 \leq \Delta N_{\rm rel} \leq 3.2$	1.3	$^{+1.4}_{-0.54}$	$0.21 \leq \Delta N_{\rm rel} \leq 3.6$	
$\sum m_{\nu}$ (eV)		≤ 0.77	≤ 1.5		≤ 0.37	≤ 0.76	

González-García et al., JCAP 08 (2010) 117

Neutrino masses in 3-neutrino schemes

Strumia & Vissani, hep-ph/0606054

Current cosmological bounds on neutrino masses

Dependence on the data set AND the cosmological model used.

Model	Observables	Σm_{ν} (eV) 95% Bound
$o\omega \text{CDM} + \Delta N_{\text{rel}} + m_{\nu}$	CMB+HO+SN+BAO	≤ 1.5
$o\omega \text{CDM} + \Delta N_{\text{rel}} + m_{\nu}$	CMB+HO+SN+LSSPS	≤ 0.76
$\Lambda \text{CDM} + m_{\nu}$	CMB+H0+SN+BAO	≤ 0.61
$\Lambda \text{CDM} + m_{\nu}$	CMB+H0+SN+LSSPS	≤ 0.36
$\Lambda \text{CDM} + m_{\nu}$	CMB (+SN)	≤ 1.2
$\Lambda \text{CDM} + m_{\nu}$	CMB+BAO	≤ 0.75
$\Lambda \text{CDM} + m_{\nu}$	CMB+LSSPS	≤ 0.55
$\Lambda \text{CDM} + m_{\nu}$	CMB+H0	≤ 0.45

González-García et al., JCAP 08 (2010) 117

Tritium β decay, $0\nu 2\beta$ and Cosmology

Future sensitivities on m_v and N_{eff} from cosmology

allowed range for N_{eff}

WMAP [7-year], arXiv:1001.4538

Future bounds on N_{eff}

Forecast analysis: Bowen et al, MNRAS 334 (2002) 760

σ[N_{eff}] ~ 3 (WMAP) σ[N_{eff}] ~ 0.2 (Planck)

Error Forecasts							
Experiment	$f_{\rm sky}$	θ_b	$w_T^{-1/2}$	$w_{P}^{-1/2}$	ΔN_{ν}	ΔN_{ν}	ΔN_{ν} (free Y)
			[μ K']	[μ K']	TT	TT+TE+EE	TT+TE+EE
Planck	0.8	7'	40	56	0.6	0.20	0.24
ACT	0.01	1.7'	3	4	1	0.47	0.9
ACT + Planck					0.4	0.18	0.24
CMBPOL	0.8	4'	1	1.4	0.12	0.05	0.09

Example of future CMB satellite Bashinsky & Seljak, PRD 69 (2004) 083002

Future bounds on N_{eff}

	Planck	P+BAO	P+HPS	P+HST	P+HST+BAO	P+HST+HPS
$\omega_{ m dm}$	0.22	0.24	0.20	0.21	0.21	0.19
$N_{ m eff}$	0.21	0.21	0.22	0.21	0.21	0.22
$\sum m_{\nu}$	0.68	0.81	0.44	0.67	0.73	0.44
w	2.14	1.16	0.72	0.74	0.76	0.55
$n_{ m S}$	0.46	0.48	0.49	0.46	0.48	0.48

Table 3: Projected sensitivity of Planck data (P) combined with LSS data to selected parameters of the vanilla+ f_{ν} + N_{eff} +w model. Given are the standard deviations of the marginalised posteriors, normalised to the values obtained with current CMB+HST+HPS data. Note that just like for current CMB data, the addition of BAO data shifts the posterior towards larger neutrino masses, resulting in a two-tailed pdf with a correspondingly larger standard deviation – this does not mean that the constraining power of Planck+BAO is worse than that of Planck alone. The marginalised posteriors of all the other parameters are very close to two-tailed Gaussians, and do not suffer from this effect.

Hamann et al, JCAP 07 (2010) 022

allowed range for N_{eff}

WMAP [7-year], arXiv:1001.4538

allowed range for N_{eff}

WMAP [7-year], arXiv:1001.4538

Future sensitivities on Σm_{v}

Future cosmological data will be available from

CMB (Temperature & Polarization anis.)
 High-z Galaxy redshift surveys
 Hannestad & Wong, JCAP 07 (2007) 004
 Takada et al, PRD 73 (2006) 083520

- o Galaxy cluster surveys Wang et al, PRL 95 (2005) 011302
- Weak lensing surveys (tomography)
 Hannestad et al, JCAP 06 (2006) 025
 Song & Knox, PRD 70 (2004) 063510
- CMB lensing Perotto et al, JCAP 10 (2006) 013
 Lesgourgues et al, PRD 73 (2006) 045021
- Fluctuations in the 21 cm H line
 Loeb & Wyithe, PRL 100 (2008) 161301
 Pritchard & Pierpaoli, PRD 78 (2008) 065009

Forecasts indicate 7-100 meV sensitivities on ∑m, are possible

Summary of future sensitivities

Summary of future sensitivities

Probe	Potential sensitivity (short term)	Potential sensitivity (long term)
CMB	0.4-0.6	0.4
CMB with lensing	0.1-0.15	0.04
CMB + Galaxy Distribution	0.2	0.05-0.1
CMB + Lensing of Galaxies	0.1	0.03-0.04
$CMB + Lyman-\alpha$	0.1-0.2	Unknown
CMB + Galaxy Clusters	-	0.05
CMB + 21 cm	-	0.0003-0.1

Table 1. Future probes of neutrino mass, as well as their projected sensitivity to neutrino mass. Sensitivity in the short term means achievable in approximately 5-7 years, while long term means 7-15 years.

Hannestad, arXiv:1007.0658

Conclusions

Cosmological observables can be used to bound (or measure) neutrino properties, in particular the sum of neutrino masses (info complementary to laboratory results)

The radiation content of the Universe (N_{eff}) will be very constrained in the near future (Planck)

Current bounds on the sum of neutrino masses from cosmological data (best Σm_v<0.4-0.6 eV, conservative Σm_v<1 eV)

Different cosmological observations in the next future Sub-eV sensitivity (0.1-0.2 eV and better) Test degenerate mass region and eventually the mimimum total mass for IH case