The AMS-RICH Detector

For the AMS-RICH Collaboration Jorge Casaus CIEMAT

1st International Conference on Particle & Fundamental Physics in Space Isola d'Elba, May 16th 2002

Outline

> Introduction

Detector Description

Expected Performances

RICH prototype

Prospects & conclusions

Introduction

In a magnetic spectrometer mass is determined by simultaneous measurement of particle rigidity, charge and velocity

 $\mathbf{m} = \mathbf{ZR} / \mathbf{bg}$

$s(m)/m = s(R)/R Å g^2 s(b)/b$

Introduction

A Ring Imaging Cerenkov Detector (RICH) measures the Cerenkov cone emitted in a radiator when a particle velocity is above the local speed of light, i.e., **b**>1/n

Introduction

And since

N _{p.e.} ~ $Z^2 sin^2(\mathbf{q})$

Photon counting within a Cerenkov Ring provides us with a measurement of the particle Charge (Z)

RICH detectors have already been flown in balloons, never in space

Physics Goals

With a large acceptance Ring Imaging Cerenkov Counter (RICH) AMS will perform precise mass measurements over an extended energy range, allowing light isotope identification up to O(10GeV/n)

This measurements will constraint the models for Galactic Cosmic Ray Propagation

The AMS/RICH Collaboration

Detector Description

Radiator

Baseline:

3 cm Silica Aerogel from Matsushita Electric Works (n=1.05) 11.3 x 11.3 x 1 cm tiles

Options:

Þ 3 cm Matsushita Aerogel (n=1.03)

D Complement dynamic range with NaF (n=1.33)

Reflector

 Al_2O_3/TiO_3

Epoxy resin

Gold

(1 mm)

(400 mm)

(0.2 mm)

12

14

Multilayer Structure deposited on a Carbon Fiber Reinforced **Composite (CFRC) Substrate**

Reflector Tests

Mandrel Manufacturing

Detection System

- 680 PMT Hamamatsu R7900-M16 (multianode 4x4)
- Gain ~10⁶ @ 800 V
- FE Electronics (3 mini PCB: Signal, HV Divider & Connection)
- FE Chip (2 Gains) Å 12 bit ADC (AD7476)

Read-out Overview

PMT raw read through flat kapton cable sent to the RICH DAQ Electronics for data reduction

Light Guide

Acrylic Plastic free of UV absorbing additives

Kevlar wire fixation

PMT Assembly

J. Casaus, May 16th 2002, Elba

Expected Performances

The RICH will provide AMS with

precise measurement of charged particle velocity s(b)/b » 0.1% @ b = 1 (protons)
charge identification
Z Confusion ≤ 10% for Z ≤ 26

Light Isotopes (1/3)

AMS will identify D up to 10 GeV/n after 3 years will collect »10⁸ D

Light Isotopes (2/3)

AMS will identify ³He up to 10 GeV/n after 3 years will collect »10⁸ ³He

Light Isotopes (3/3) AMS will separate ¹⁰Be from ⁹Be for 2 GeV/n < E < 10 GeV/n after 3 years will collect »10⁵ ¹⁰Be

RICH Prototype

In order to test the expected performances a prototype has been built including

- Significant amount of final PMT
- LG Prototypes
- Final FE Electronics design
- DAQ & Data Reduction prototype
- Different radiator materials

cosmic runs have just started !

RICH Prototype

96 PMT with a pitch of 31mm

Prototype Assembly

PMT + FE Electronics + LG arrangement

Radiator handling

Prototype Layout

Complemented with scintillator planes for triggering and MWPC for tracking

Prototype Performances

- 1% bad channels
- El. noise & PMT DC according to the expectations

Cerenkov Rings

The light guide angular response agrees with the expectations

Photon Yield & b Spectrum

Radiator yield in agreement with the expectations

Estimated b-Resolution 25% worse than ideal simulation....

Prospects

- Tests with cosmics in different conditions (radiator refraction index, thickness...) will be run for two more months
- In order to have get more reliable estimations of the detector performances (Efficiency & Resolution), an ion test beam is scheduled in September/October 2002
- Pb beam (20GeV/n and 158 GeV/n) from the SPS colliding on a production target (Be)
- Fragments can be selected with a transport beam line to s(R)/R = 1.5%

Conclusions

The RICH detector will provide precise measurement of particle velocity

 s(b)/b » 0.1% @ b = 1 (protons) particle charge

Z Confusion $\leq 10\%$ for $Z \leq 26$

- A 1/10th prototype has been built and is being tested with cosmic muons. Preliminary results look promising
- An ion test beam @ CERN is scheduled in September