The Tevatron during the LHC era: results and prospects for the CDF experiment

Monica D'Onofrio

University of Liverpool

HEP Seminar, Madrid 2nd March 2010

The Large Hadron Collider (LHC)

After 20 years of R&D, Machine and Detectors building, commissioning and preparation, the LHC is up and running!

November 23rd 2009 - First collisions at injection energy (450GeV)

December 8th 2009 -2x2 colliding bunches accelerated at 1.18 TeV!

By December 16th 2009: Recorded more than 1M events at \sqrt{s} =900 GeV, and 50K events at \sqrt{s} =2.36 TeV

November 23rd: First Collisions for All!

Detectors performance

- Amazing detector performance for all experiments
- First results from ATLAS and CMS (as example)
 - Masses of K_s and A agree well with PDG values, resolution agrees with expectation (tracking performance)
 - Good agreement between data and expectation for calorimeter objects

Minimum Bias Stream, Data 2009 √s=900 GeV

Both tracks: p_ > 100 MeV, Si hits > 6

 $cos(\theta) > 0.8$, flight distance > 0.2 mm

μ = 497.5 ± 0.1 (stat) MeV

 $\sigma = 8.2 \pm 0.1$ (stat) MeV PDG (2009) m_a = 497.614 ± 0.024 MeV

Data

Simulation

Gauss (+poly) fit

ATLAS Preliminary

K_c⁰ Invariant Mass

8000 ₩

€ 5000

Entries

3000

2000

Experimental reach of LHC

Nominal LHC c.o.m energy \rightarrow 14 TeV (7 TeV+7TeV)

2010-2011 Running plans: \rightarrow 7 TeV (3.5 TeV+3.5 TeV) up to 1 fb⁻¹ of collected luminosity (initially foreseen @ 10 TeV)

300 pb⁻¹ at 5 TeV+5 TeV ~ 1 fb⁻¹ at 3.5 TeV+3.5 TeV \rightarrow ~ 8/9 fb⁻¹ at 1 TeV+ 1 TeV

Tevatron accelerator → proton-antiproton: √s ~ 2 TeV

Tevatron & CDF

Both still doing great after ~9 years of operations!

Tevatron

Proton-antiproton: $\sqrt{s} = 1.96 \text{ TeV}$ Peak luminosity $\rightarrow > 3.5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ Integrated luminosity/week $\rightarrow \sim 70 \text{ pb}^{-1}$

CDF

record: 85-90 % of delivered luminosity Stable efficiency since 2002 ...

Complementarities

- LHC opens a new regime for QCD and extend phase space reach
- Tevatron is a q-qbar machine
- LHC is a gluon-gluon machine
- Ratio TeV/LHC (10 TeV c.o.m.)

- This could be an advantage for well motivated analyses:
 - search for chargino/neutralino
 - search for light gluinos
 - asymmetry measurements
- → Similar S/B for some processes
 - 3rd generation squarks, SM higgs

Outline

- The Standard Model and Beyond
- Precision measurements of SM processes
- Recent observations
- The SM Higgs haunt
- Searching for physics beyond SM
- Conclusions and remarks

"Particles, particles, particles."

The Standard Model and Beyond

The Standard Model

- Matter is made out of fermions:
 - a 3 generations of quarks and leptons
- Forces are carried by Bosons:
 - Electroweak: γ,W,Z
 - Strong: gluons

	Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$ 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02767	
m _z [GeV]	91.1875 ± 0.0021	91.1875	
Г _Z [GeV]	2.4952 ± 0.0023	2.4958	-
σ_{had}^{0} [nb]	41.540 ± 0.037	41.478	
R _I	20.767 ± 0.025	20.743	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01644	
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	0.1481	-
R _b	0.21629 ± 0.00066	0.21582	
R _c	0.1721 ± 0.0030	0.1722)
$A_{fb}^{0,b}$	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	-
A _c	0.670 ± 0.027	0.668) I I I
A _l (SLD)	0.1513 ± 0.0021	0.1481	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.399 ± 0.025	80.376	
Г _W [GeV]	$\textbf{2.098} \pm \textbf{0.048}$	2.092	
m _t [GeV]	172.4 ± 1.2	172.5	
July 2008			

Three Generations of Matter

Remarkably successful description of known phenomena:

• predicted the existence of charm, bottom, top quarks, tau neutrino, W and Z bosons.

• Very good fit to the experimental data so far

but ...

The missing piece: the Higgs

• What is the origin of masses?

- → Within SM, Higgs field gives mass ro Particles (EWK symmetry breaking)
- SM predicts existence of a new massive neutral particle
 Not found yet!
- Theory does not predict its mass
- LEP limit: m_H>114 GeV @ 95% CL
- Indirect limit from EW data:
 - Preferred value: $m_H = 84^{+34}_{-26} \text{ GeV}$
 - m_H < 154 GeV @ 95% CL

WOULD THE HIGGS DISCOVERY

COMPLETE OUR UNDERSTANDING OF NATURE ?

Beyond SM: the Unknown

The Standard Model is theoretically incomplete

 $\Delta m_{H}^{2} \sim \Lambda^{2}$

 $\Lambda = M_{pl}$?

- Mass hierarchy problem
- → radiative correction in Higgs sector
- Unification
- Dark Matter
- Matter-antimatter asymmetry

Many possible new particles and theories

- SuperSymmetry
- Extra Dimension
- New Gauge groups (Z', W')
- New fermions (e*, t', b' ...)

Can show up in direct searches or as subtle deviations in precision measurements

••••

A long journey ...

- Jet cross section measurements, heavy flavour physics, W/Z
- Precision measurements (Top properties, observation of rare processes...)
- Higgs and New Physics BSM, searches, looking for 'the' unexpected

More than 50 papers published only in 2009, many to come in 2010 and beyond.

Precision measurements of SM processes

QCD: Inclusive cross sections, W/Z+jets EWK: W mass and width Top: Cross section and Mass

Inclusive cross sections

Test of Next-to-Leading Order (NLO) perturbative QCD

inclusive jet / photon cross section

- Probing distances ~10⁻¹⁹ m
- Constrains PDF at high-x
- Sensitive to new physics at high pT

- Data/NLO pQCD in good agreement at high p_T
- Enhancement at low p_T
- D0 measurement shows similar trends (Phys. Lett. B 639, 151)
 - Similar shape also in Run 1 analyses – need to be understood

Boson+Jets Production

$Z \rightarrow ee + jets$

- W/Z+jets critical for physics at the Tevatron and LHC (i.e. Higgs, SUSY)
- NLO pQCD calculations available up to 2(3) jets
- Many Monte Carlo tools are available (LO + Parton shower) → Need "validation" by experimental measurements

Boson+b-jets

B-tagging → reconstruct secondary vertex from B-hadrons decay

W + Gjets

- Event selection:
 - **p_T > 20 GeV/c**, |η| < 1.1 e/μ,
 - $p_{T} > 25 \text{ GeV/c neutrino (MET)},$
 - **α** 1 or 2 E_T > 20 GeV/c², $|\eta|$ < 2.0 jets

 $\sigma(W + bjet) \cdot BR(W \rightarrow lv) = 2.74 \pm 0.27 \pm 0.42 \, pb$ x2.5-3.5 larger than Pythia/Alpgen/NLO

Events with:

- 66 < M(ee/μμ)<116 GeV/c²
- □ E_T (jets) > 20 GeV/c², |η| < 1.5
- MET<25 GeV (to remove Wjets bkg)</p>

W Mass and Width

world's most precise single measurements!

= 80401±44 MeV (DØ, 1 fb⁻¹) Γ_w = 2032±73 MeV (CDF)

Next round CDF @ 2fb⁻¹ expect <30 MeV uncertainty !

Top Pair Production

Top **discovered** at the Tevatron in 1995.

 $t \rightarrow Wb$ (BR~100%), $W \rightarrow I_V$ (11%) / $\rightarrow qq'$ (67%)

- Test QCD in very high Q² regime
- Measurements across all decay channels and topologies have different sensitivities to new physics:

Monica D'Onofrio

Top Mass

- Precision in top mass measurement down to 0.75% and still improving!
- Several analysis and techniques employed
 - Matrix element, templates
 - Use in situ calibrations when possible $(W \rightarrow jj)$

Mt_{reco}

- Data

bkad

ົ້ນ 250

Entries/(10.0 (

100

CDF Run || Preliminary (4.8 fb⁻¹)

bkgd+ttop25 M, = 172.5 GeV/c²

Recent observations

New particles Rare processes (single top, diboson)

A new particle!

- Reconstruct B⁺ as B⁺ \rightarrow J/ $\psi\phi$ K⁺, with J/ $\psi\rightarrow\mu^{+}\mu^{-}$ and $\phi\rightarrow$ K⁺K⁻
- Search for structure in J/ψφ mass spectrum inside B⁺ mass window

Search for structure in $J/\Psi \phi$ mass spectrum

- m = 4143.0 ± 2.9 (stat.) ± 1.2(syst.) MeV/c² $\Gamma = 44.718.2$ (stat.) ± 2.7(syst.) MeV/c²
 - = 11.7+8.3 (stat.) ± 3.7(syst.) MeV/c²
- Significance: at least 3.8σ for most unphysical conservative background
- Width indicates a strong decay

Single Top

EWK top production

Observation in April 2009! s+t channel = 2.76 +0.58 -0.47 pb

- Test s vs t [new physics]
- Lifetime [new physics]

s-channel: σ = 1.12±0.05 pb t-channel: σ = 2.34±0.13 pb

Measure $|V_{tb}|$ without assuming 3 generations

Sensitive to: 4th quark generation, anomalous couplings at Wtb vertex, new particles (H+, W'), FCNC.....

 $|V_{tb}| = 0.91 \pm 0.11$ (exp.) ± 0.07 (theory)

Di Boson measurements

<u>Recently:</u> more data and optimized tools allowed to explore channels with jets, MET (larger bkg and uncertainties):

 $Z\gamma \rightarrow vv\gamma;$ WW $\rightarrow Ivjj;$ WZ $\rightarrow Ivjj;$ ZZ $\rightarrow vvjj;$ **Before**, observed "clean" channels (including lepton/photons) $W\gamma \rightarrow Iv\gamma$; $Z\gamma \rightarrow II\gamma$; $WW \rightarrow IvIv$; $WZ \rightarrow IvII$; $ZZ \rightarrow IIII$

Important processes as backgrounds in the Higgs searches

(Some) Results on WW/WZ/ZZ

Use MET+jets final states

Ivjj final states

The SM Higgs Boson

To find the needle in the haystack, need to look everywhere possible...

Search strategy

Do them all!

- □ Direct production $gg \rightarrow H$
 - Highest Production rate, Largest background

Associated production ZH/WH

 Leptonic vector boson decay helps for triggering and signal extraction

- Low Mass (M_H<135 GeV/c²)
 - H→bb mode dominates
 - → WH→Ivbb, ZH→vvbb, ZH→Ilbb VBF Production, VH→qqbb, H→ $\tau\tau$ (with 2jets), H→ $\gamma\gamma$, WH->WWW, ttH
- High Mass (135<M_H<200 GeV/c²)
 - H→WW mode dominates

Higgs→WW^{*}→IvIv

- Most sensitive channel for high mass Higgs
- Unbalanced transverse energy (MET) from v
- **2 leptons:** $e,\mu,\tau \rightarrow e,\mu$ (must have opposite signs)
 - *Key issue*: Maximizing lepton acceptance

- Primary backgrounds: WW (and top in di-lepton decay channel)
 - Higgs is scalar ⇒ leptons travel same direction
 - In t-channel WW, W are polarized along the beam direction

Use Matrix Element and Neural Network methods

Results at m_H = 165GeV : 95%CL Limits/SM

L (fb ⁻¹)	Higgs Events	Exp.	Obs.
4.8	1.9±0.2	1.21	1.21

Approaching SM sensitivity!

The CDF Analyses

60 independent sources of systematic uncertainty at low mass sources of uncertainty affect rates and shapes of signal and background predictions in correlated ways Bin-by-bin MC stat. uncertainties included too. 30 sources at high mass

Current results

Tevatron combination for HCP 2009

Tevatron Projections

LHC prospects for SM Higgs

SM Higgs: a challenge!

Required luminosity for 95% C.L. exclusion

most promising in the range 150-180 GeV, again with $H \rightarrow WW^* \rightarrow I_{U}I_{U}$

 \rightarrow Partially excluded at the Tevatron!

The Search for the unknown: BSM

Supersymmetry Extra-Dimension New Gauge Bosons New physics in Top sector

Search for Supersymmetry

- New spin-based symmetry relating fermions and bosons
- Minimal SuperSymmetric SM(MSSM):
 - Mirror spectrum of particles
 - Enlarged Higgs sector: two doublets (5 physical states)

- Broad searches and strong exclusion limits (some world's best!) mSUGRA:
 - charginos/neutralinos > 165 GeV
 - squarks > 390 GeV (all gluino masses)
 - gluinos > 280 GeV (all squark masses)
 GMSB:
 - Neutralinos > 150 GeV

General MSSM

stop > 200 GeV

-Miguel Vidal's PhD thesis!

- sbottom > 240 GeV
- **Imits on tan** β & BSM higgs

$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{*}$ production

"trileptons"

Assume R_P conservation, χ̃⁰₁ is LSP
 Low cross sections (σ x Br < 0.5 pb)
 Very clean signature:

 Missing E_T due to undetected ν, χ⁰₁

3 isolated leptons

Golden mode @ Tevatron: very competitive with the LHC (low bkg, similar σ)

3 identified leptons (e,μ)
2 identified leptons + track (l)
"Tight" and "loose" e,μ categories

Main backgrounds:

□ WW, WZ, Drell-Yan, W+jets, ttbar → Rejection using kinematic selections on: M_{I+I-} , N jets, Missing E_T , $\Delta \phi$ between leptons...

Search for high mass resonances

- Di-lepton resonances have a strong track record for discovery → J/ψ, Y, Z
 - Enlarge the possible final states looking also in *dijet, ditop or dibosons*!
- Construct the pair invariant mass and look for any excesses in the high mass spectrum

Example of di-lepton events

Advantage

Sensitive to many BSM scenarios: •Extra-Dimensions •Extended SUSY-GUT groups (SO(10),E6,E8...leading to additional gauge bosons, Z' and W') •R-parity violating SUSY and more...

At CDF all modes have been explored!

Diboson resonances e Ρ W.r4 11% G*/Z'/W' Clean final states + mass constraints W/ 68%/70% Þ L=2.9 fb⁻¹ Final state: electron+MET+ 2jets a Interpretation given in different models, CDF run II Preliminary 2.9fb $\xi = c(M_W/M_W)^2$ optimized for expected resonance mass CDF Run I 110 pb⁻¹ CDF run II Preliminary 2,9fb CDF Run II, 2.9 fb 40 GeV bin W' Exclusion WW in evíj 16 Et cuts optimized for 600-700GeV G* 14 10 $W \rightarrow ve$ with two solutions Observed Exclusion Events / -e- Data 12 Bkgd ±1 a Dijets in [65,95] (for WW) Expected Exclusion G* signal 600GeV G* W+Jets **Dijets in [70,105] (for WZ)** illi tī WW 285 dco 3-jet events also considered Others $\xi = (M_w/M_w)$ \rightarrow **W7** 516 10-2 I I I I 0 700 TITI 900 200 300 500 600 800 400 M_w (GeV) 0 100 200 300 400 500 600 700 800 900 1000 WW Invariant Mass (GeV) CDF run II Preliminary 2.9fb CDF Run II Preliminary 2.9 fb⁻¹ $= c(M_W/M_Z)^2$ σ_{95%} (G*→WW→e∨qq)(pb) Ę 607 CDF Run II. 2.9 fb⁻¹ Z' Exclusion k/m_=0.1 110 Observed Exclusion 632 10-1 Expected Exclusion 300 600 700 500 G* mass (GeV 10 607 GeV Pythia v6.216 ×1.3 K factor 247 Data Limit xpected Limit $= (M_{W}/M_{T})^{2}$ σem Expected Limit ±1σ 10-2 544 10⁻² Expected Limit ±2a 700 1111 900 1000 200 300 400 500 600 800 200 300 400 500 700 600 M₇ (GeV) G* mass (GeV)

Top Forward-Backward Asymmetry

- Top pair SM prediction \rightarrow Symmetric at LO
- At NLO in ttbar rest frame, asymmetry due to interference of ME amplitudes for same final state → A_{fb} = 0.05 +/- 0.015 PRL 81,89 (1998)
- Several BSM production mechanism predict an observable asymmetry (Z', Axigluons)

 \rightarrow Lepton charge provides an information about top/anti-top

 \rightarrow Kinematic event reconstruction similar to top mass analyses

 \rightarrow Use the system of jets from hadronically decaying top quark

 $A_{fb} = 19.3\% \pm 6.5\% \text{ (stat)} \pm 2.4\% \text{ (syst)}$

Search for t'

- Signal Region: Lepton + >= 4 jets
- Use H_T scalar sum of all transverse momenta
- Perform mass reconstruction similar to top mass
- Possible new physics mechanism:

Conclusions and remarks

- The CDF physics program continues to be remarkably successful:
 - Continuously on-going updates of existing results
 - Use more sophisticated techniques, more data, new ideas!
- No evidence of new physics yet, but interesting hints
- Exciting potential, especially in the Higgs sector
- A lot of more data ready to be analyzed...

The CDF experiment

Data Taking Efficiency

Multi-purpose experiment

Silicon detectors

- Precision vertex detection
- Displaced decays: heavy-flavour tagging

Drift chamber (in B = 1.4 T)

- Charged particles up to $\eta \sim 1.5 2$
- High efficiency and excellent resolution

Sampling calorimeters

- 4π coverage (fundamental for E_T)
- Jets and electron reconstruction

Muon detectors

• Covering up to $\eta \sim 1.5$

record: 85-90 % of delivered luminosity

~ 7 fb⁻¹ collected data per experiment

CP violating phases

 $\beta_{s} \equiv \arg(-V_{ts}V_{tb}^{*} / V_{cs}V_{cb}^{*}) \stackrel{\text{SM}}{\approx} 0.02$ $\phi_{s} = \arg(M_{12} / \Gamma_{12}) \stackrel{\text{SM}}{\approx} 0.004$ $\Delta\Gamma_{s} = \Gamma_{L} - \Gamma_{H} = 2|\Gamma_{12}|\cos\phi_{s}$

$$\begin{split} \phi_{s}^{\text{ NP}} \text{ contributes to both } \phi_{s} \text{ and } \beta_{s} \\ & \rightarrow 2\beta_{s} = -2\beta_{s}^{\text{ SM}} + \phi_{s}^{\text{ NP}} \\ \text{ if } \phi_{s}^{\text{ NP}} \text{ dominates, } 2\beta_{s} = \phi_{s}^{\text{ NP}} \end{split}$$

Combination of D0 and CDF results on $\Delta\Gamma_s$ and CP-violating phase $\beta_s^{J/\psi\phi}$

 $\beta_s^{J/\psi\phi}$ within [0.27, 0.59] U [0.97, 1.30] at 68% C.L. p-value(SM) = 3.4% (~2.12 σ)

New heavy baryons

- 2009: Observation of the Ω⁻_b and measurement of the properties of the Ξ⁻_b (2007) and Ω⁻_b
- → production of the Ω_{b}^{-} through the decay chain $\Omega_{b}^{-} \rightarrow J/\psi \Omega^{-}, J/\psi \rightarrow \mu^{+}\mu^{-}, \Omega^{-} \rightarrow \Lambda K^{-},$ $\Lambda \rightarrow p \pi^{-},$ measure mass and lifetime (NEW!)

	Mass (MeV/c ²)	Lifetime (ps)
Ξ _b -	$5790.9 \pm 2.6 \pm 0.8$	$1.56^{+0.27}_{-0.25} \pm 0.02$
Ω_{b}^{-}	$6054.4 \pm 6.8 \pm 0.9$	$1.13^{+0.53}_{-0.40}\pm0.02$

Puzzle: mass measurement of Ω_b^- inconsistent with the only previous observation of this particle (D0)

Dijet Mass Spectrum

- Test pQCD predictions
- Sensitive to new particles decaying into dijets: excited quarks, heavy gluons, techni-p, etc

Dijets with jets |y^{jet}|<1

Consistent with QCD - no resonance
Most stringent limits on many new heavy particles

Top production: LHC vs Tevatron

• σ (W) increases by factor of 10 but σ (W+4 jets) is a factor 100, just like σ (ttbar)

** note that these numbers consider 10 TeV as c.o.m.

W+Multijet rates

Di-lepton resonances

Dielectron

- Central (|η_{1,2}|<1) or
 Central-Forward (|η|<2)
 e⁺e- pair with E_T>25 GeV
- Resonance search performed in mass range 150-1000 GeV/c²
- No evidence for NP

Exclude: M(G*) < 850 GeV/c² for k/M_{Pl}=0.1

SM-like Z'>966 GeV/c²

Dimuon: Search in 1/m_{III} (constant detector resolution)

Update with 5 fb⁻¹ and alternative method will be ready soon!

Forward/Backward Asymmetry

Systematic uncertainty includes various assumptions about the shape of –QI-Y_{had} distribution

Employ an unfolding procedure to go from reconstructed to parton level:

1. Subtract the background

2. Unfold for bin-to-bin migration effects due to detector resolution and event selection effects