

Método para determinar la masa, sección eficaz y anchura del bosón de Higgs del Modelo Estándar en el canal de desintegración $H \rightarrow ZZ^{(*)} \rightarrow 4\mu$ en el experimento CMS de LHC

María Aldaya

CIEMAT - Madrid

Diploma de Estudios Avanzados, U. Granada, 07-07-2006

- En el Modelo Estándar (SM), las partículas adquieren masa por la rotura espontánea de la simetría electrodébil (EWSB)
- Mecanismo de Higgs \rightarrow partícula escalar: bosón de Higgs, H
- Tras el descubrimiento del bosón de Higgs en el colisionador LHC (si existe), será crucial medir con precisión sus propiedades: masa, sección eficaz de producción, anchura ...
- En LHC (2007), el proceso H→ZZ^(*)→4µ es uno de los canales más limpios para medir sus parámetros en un amplio rango de masas

Ciemat

En este trabajo presento un método para determinar m_H , $\sigma_H y \Gamma_H$ en el experimento CMS para $\mathcal{L} = 30 \text{ fb}^{-1}$, usando el canal $H \rightarrow ZZ^{(*)} \rightarrow 4\mu$:

Ajuste a la distribución de masa invariante de cuatro muones, obtenida a partir de sucesos simulados de señal y contaminación, incluyendo:

- Resolución finita del detector
- Radiación de bremsstrahlung en el estado final (QED)
- Contribución de la contaminación

Los resultados de este trabajo han sido incluidos en el *CMS Physics Technical Design Report* vol.II (2006)

- El mecanismo de Higgs predice la existencia de un escalar: el bosón de Higgs, H
- La dependencia de la anchura, $\Gamma_{\rm H}$, y de las fracciones de desintegración, BR(H), con m_H es característica del H del SM

- Masa no predicha por la teoría: único parámetro libre en el mecanismo de Higgs
- Existen límites a la masa de H:
 - m_H > 114.4 GeV/c² (LEP, búsqueda directa)
 - $m_{H}^{2} \lesssim 225 \text{ GeV/c}^{2}$ (95% CL) (medidas de precisión de LEP, SLD, Tevatron, ...)

Parámetros:

Colisionador p-p L = 2 x 10^{34} cm⁻²s⁻¹ \sqrt{s} = 14 TeV ~2800 paquetes de 10^{11} protones, separados entre sí 25 ns ~ 20 interacc. p-p por cruce de haces 10^9 interacc. p-p por segundo

Detectores:

CMS y ATLAS (de propósito general), LHCb (física de b's), ALICE (iones pesados)

Física del bosón de Higgs en LHC

σ

barn

mb

μb

nb

pb

fb

- 5 -

A las energías de LHC:

 $\begin{array}{l} \sigma_{total} \thicksim mb \\ \sigma_{señal} \thicksim fb \end{array}$

σ_{señal} ~ 12 órdenes de magnitud menor que la contaminación !!!!

• selección on-line (trigger):

40 MHz \rightarrow 150 Hz

- selección off-line: selección de la señal, reduciendo la contaminación
- En 1 año de toma de datos (10⁷ s):

1.5 x 10⁹ sucesos $\rightarrow O(10-100)$ sucesos

- 1 suceso ~ 1.5 MB \rightarrow 2 x 10⁶ GB / año (varias decenas de miles de PCs actuales necesarios para el procesado)
- •Reto tecnológico sin precedentes que ha llevado a la creación de la infraestructura **Grid**

Ciema

María Aldaya

El experimento CMS

María Aldaya

7 de julio de 2006

El experimento CMS

Fotones: ECAL + no tracker Electrones: ECAL + tracker

Muones: cámaras de muones + tracker

Hadrones cargados: HCAL + tracker Hadrones neutros: HCAL + no tracker

Señal

• $H \rightarrow ZZ^{(*)} \rightarrow 4\mu$: canal muy limpio, bueno para descubrimiento: resonante en $m_{4\mu} \sim m_H$ (señal muy característica, a pesar de que BR($H \rightarrow ZZ^{(*)} \rightarrow 4\mu$) ~ 10⁻⁵) 'Golden channel' en un amplio rango de m_H : < 160 GeV/c² y 180 – 500 GeV/c²

Topología:

• 4 muones (dos positivos y dos negativos):

- Aislados
- Alto p_T
- Apuntando al vértice primario

• Masa invariante de los pares de muones compatible con m_z

• Masa invariante de los 4 muones es la del bosón de Higgs (dentro de la resolución del detector)

Contaminación

$pp \rightarrow (Z^{(*)}/\gamma^*)bb:$

- Producción a partir de gluones o quarks en el estado inicial
- 1 par $\mu^+\mu^-$ dentro de b-jets, p_T relativamente bajo
- Generado a LO y normalizado a NLO:

 σ_{NLO} = 278.4 pb

• pp \rightarrow tt:

- Producción mediante fusión de gluones y aniquilación quark-antiquark.
- 1 par μ⁺μ⁻ dentro de b-jets, p_T
 relativamente bajo; ningún Z en el suceso
- Generado a LO y normalizado a NLO: σ_{NLO} = 840 pb

- pp \rightarrow (Z^(*)/ γ *) (Z^(*)/ γ *):
 - Generado (LO) sólo a partir de aniquilación quark-antiquark (gg no incluido en el generador)
 - Topología similar a la de la señal, pero no resonante

Normalizado a NLO: σ_{NLO} = 152.6 pb

Sucesos con 2 pares $\mu^+\mu^-$ reconstruidos dentro del detector ($|\eta| < 2.5$ y $p_T > 3$ GeV/c):

- <u>Masa del par de muones más cercano a m_z</u>: 70 GeV/c² < m_{$\mu+\mu$}< 100 GeV/c²
- \underline{p}_T > 15 GeV/c, 15 GeV/c, 12 GeV/c, 8 GeV/c (del muón de mayor p_T al de menor)
- <u>Aislamiento</u>: cantidad de energía (momento) en el calorímetro (tracker) en un cono $R^2 \equiv \Delta \eta^2 + \Delta \phi^2$. Del μ más aislado al menos aislado:
 - Calorímetro: R = 0.24 rad, E_{max} = 3.5 GeV, 5 GeV, 5 GeV, 9 GeV
 - Tracker: R = 0.20 rad, $p_{T max}$ = 2 GeV/c, 2.5 GeV/c, 2.5 GeV/c, 4 GeV/c

Eficiencia de selección de la señal: ~ 0.5

Eficiencia de selección de la contaminación: ZZ ~ 5 x 10⁻² , Zbb ~ 10⁻⁶ , tt ~ 10⁻⁶

A partir de la distribución de $m_{4\mu}$ para los sucesos seleccionados se obtienen los parámetros del bosón de Higgs

Procedimiento de ajuste

- La altura de s depende de la sección eficaz
- La posición del pico proporciona el valor de m_H
- La anchura depende de Γ_H y de la resolución del detector
- Ajuste discreto de máxima verosimilitud a la distribución de m_{4μ} para la señal y la contaminación:

$$f_{sb}\left(\mathbf{m}_{4\mu}; \boldsymbol{m}_{fit}, \boldsymbol{\Gamma}_{fit}, \boldsymbol{N}_{s}, \boldsymbol{N}_{b}\right) = \boldsymbol{N}_{s} \cdot \boldsymbol{p}_{s}\left(\mathbf{m}_{4\mu}; \boldsymbol{m}_{fit}, \boldsymbol{\Gamma}_{fit}\right) + \boldsymbol{N}_{b} \cdot \boldsymbol{p}_{b}\left(\mathbf{m}_{4\mu}\right)$$

- p_s y p_b son las pdf (normalizadas) para señal y contaminación
 - $N_s + N_b$ = número de sucesos 'observados'
 - m_{fit} = posición del pico de la masa
 - $\Gamma_{\rm fit}$ = anchura del bosón de Higgs
- La descripción precisa del espectro de m_{4μ} debe tener en cuenta la resolución experimental y la radiación debida al bremsstrahlung (QED) en el estado final

Procedimiento de ajuste

<u>Señal</u>

$$p_{s} = \beta \cdot p_{core} \left(\mathbf{m}_{4\mu}; m_{fit}, \Gamma_{fit}, \sigma_{reso} \right) + (1 - \beta) \cdot p_{tail} \left(\mathbf{m}_{4\mu}; m_{fit}, \tau \right)$$

- p_{core} es la convolución de una distribución de Breit-Wigner con una distribución gaussiana que da cuenta de la resolución finita del detector
 - − Para m_H < 190 GeV/c², $\Gamma_{\rm H}$ << resolución exp. → p_{core} ~ gaussiana
 - − Para m_H > 400 GeV/c², Γ_{H} >> resolución exp. → p_{core} ~ Breit-Wigner

(1- β) = fracción de sucesos en la cola radiativa. La forma de la cola se parametriza *ad hoc* como: $p_{tail} = \frac{(m_{4\mu} - m_{fit})^2}{2\tau^3} \exp\left(\frac{m_{4\mu} - m_{fit}}{\tau}\right)$ si $m_{4\mu} < m_{fit}$ y 0 en cualquier otro caso

- Para $m_{4\mu}$ < 190 GeV/c² se ajusta una gaussiana con anchura (σ_{reso}) libre
- Para masas mayores, la anchura de la gaussiana (σ_{reso}) se fija en el ajuste, mientras que la anchura de la Breit-Wigner es un parámetro libre

Contaminación

- p_b se parametriza de diferentes formas (polinómica o exponencial) dependiendo de la región de masa considerada
 - Los parámetros que describen la forma están fijos en el ajuste global
 - La normalización es un parámetro libre en el ajuste global

A partir de los ajustes a estas distribuciones se obtiene la precisión en la determinación de m_H, $\sigma_{\rm H}$ y $\Gamma_{\rm H}$

María Aldaya

Jiemo

Determinación de la masa

El valor de la masa del bosón de Higgs se recupera con exactitud (sin sesgo)

El **error estadístico** en N_s se obtiene del ajuste. El error relativo en la sección eficaz se calcula como $\Delta N_s/N_s$ (ya que $\sigma \sim \mathcal{L} / N_s$)

Errores sistemáticos:

- eficiencia en la reconstrucción = 2 %
- cortes de selección = 1 %
- determinación de la luminosidad = 3 %

Estos errores están esencialmente descorrelacionados

Los efectos sistemáticos son pequeños comparados con la precisión estadística

Los cuadrados muestran el resultado del ajuste; la banda muestra su error estadístico

Línea roja: límites superiores al 95% CL (no hay sensibilidad en esta región)

Los círculos y los triángulos muestran otros métodos:

- círculos: solamente Breit-Wigner
- triángulos: solamente gaussiana

SOLAMENTE EL AJUSTE CON LA CONVOLUCIÓN RECUPERA EL VALOR REAL DE LA ANCHURA

- En este estudio he puesto de manifiesto la capacidad del detector CMS para una determinación precisa de la masa, sección eficaz y anchura del bosón de Higgs del Modelo Estándar
- El canal de desintegración H→ZZ^(*)→4µ proporciona una signatura clara y la posibilidad de mantener la contaminación en la muestra seleccionada en niveles manejables
- He desarrollado un método de medida robusto para determinar dichos parámetros utilizando un ajuste discreto de máxima verosimilitud a la distribución de m_{4u}
- Los valores de los parámetros se recuperan con gran exactitud en todo el rango de masas
- La masa se puede determinar con precisiones entre 0.1% y 5.4%
- La anchura intrínseca solamente se puede determinar cuando m_H > 190 GeV/c², con una precisión en torno al 35%. La resolución experimental domina para masas menores
- La sección eficaz de producción se puede determinar con una precisión en torno al 30% para masas entre 130 y 150 GeV/c² ó superiores a 190 GeV/c²
- Estos resultados han sido incluidos en el CMS Physics Technical Design Report vol.II

BACK-UP SLIDES

María Aldaya

7 de julio de 2006

Los estudios de física se realizan a partir de sucesos simulados con diferentes programas (PYTHIA, CompHEP)

Estas muestras están generadas a LO y normalizadas a la sección eficaz total NLO

Sólo se consideran sucesos con 2 pares $\mu^+\mu^-$, con $|\eta| < 2.4$ y p_T > 3 GeV/c

Los sucesos así generados se hacen pasar por el software de simulación del detector (GEANT4: geometría + interacción partículas-detector)

Las señales simuladas son reconstruidas del mismo modo que lo serán los datos (software oficial de reconstrucción de CMS)

Discovery Potential

 $S_{L} = \sqrt{\langle 2\ln Q \rangle}$

- H → ZZ^(*) → 4µ channel has a large sensitivity in a wide range of masses even for low luminosity
- Systematic uncertainties on the normalization of S and B (detailed studies by UF group) taken into account: σ_{syst} band
 - Effect in S_L is well below statistical uncertainty (1.5 – 2.5 units of S_L , depending on the mass range)
- Significance is proportional to integrated luminosity

Resolución

- Para $m_{4\mu}$ > 2 m_Z : resolución obtenida de sucesos ZZ
- Para $m_{4\mu}$ < $2m_Z$: resolución obtenida directamente de la distribución $m_{4\mu}$ (Γ_H << σ_{reso})
- Ambas determinaciones son consistentes

Procedimiento para obtener la resolución experimental:

- Ajuste gaussiano a $(m_{4\mu}$ $m_{4\mu}^{gen})/ m_{4\mu}^{gen}$ en varios rangos de $m_{4\mu}$
- \bullet La evolución de la anchura de la gaussiana con $m_{4\mu}$ se parametriza con una recta
- Este parámetro se fija en los ajustes

(m_{4µ} - mgen)/m^{gen} 00 50

-0.05

Distribuciones esperadas para $\mathcal{L} = 30 \text{ fb}^{-1}$

Distribuciones esperadas para m_H = 140, 170, 250, 450 GeV/c²

Los resultados de los ajustes son perfectamente compatibles con los valores reales, dentro de su incertidumbre estadística

