LHC experiments: the Detectors

Disclaimer

- This lecture was assembled at very short notice. As a consequence, I have mostly concentrated on the two multipurpose experiments ATLAS and CMS. Apologies to ALICE and LHCb teams.
- Thanks to G.Hall, P.Sphicas and J.Virdee for giving access to recent presentations.

LHC Experiments: the detectors

- 1. LHC parameters
- 2. Physics Requirements
- **3.** Experimental Challenges
- 4. The choice of the magnet and the Muon system
- 5. Calorimetry
- 6. Tracking and b tagging
- 7. Data Challenge
- 8. A few slides on LHCb and ALICE

1. LHC Parameters

- Why the TeV region
- Why such high luminosity ?
- Timeline for LHC startup

The TeV scale

- LEP, SLC and the Tevatron: established that we really understand the physics at energies up to 100 GeV
 - And any new particles have masses above 100-300 GeV and in some cases TeV
- The Higgs itself can have a mass up to ~700-800 GeV;
 - if it's not there, something must be added by ~1.2 TeV, or WW scattering exceeds unitarity
- Even if the Higgs exists, all is not 100% well with the Standard Model alone: next question is why is the (Higgs) mass so low?
 - The same mechanism that gives all masses would drive the Higgs to the Planck scale. If SUSY is the answer, it must show up at O(TeV)
 - Recent: extra dimensions. Again, something must happen in the O(1-10) TeV scale if the above issues are to be addressed
- Conclusion: we need to study the TeV region

LHC: Luminosity requirements

LHC: make up for the lower production cross section

P.Bloch IMFP05

LHC: Luminosity requirements

- Need for very high Luminosity
 - e⁺e⁻, σ~1/s, so a factor x in c.m. energy needs a factor x² in luminosity (for the same number of events; N=σL)
 - Not true at a hadron-hadron collider:

$$\sigma = \frac{1}{s} \sum_{a,b} \int_{x_a x_b = m^2/s}^{1} \hat{\sigma}_{ab} \, dx_a \, dx_b \, F_a(x_a, Q^2) \, F_b(x_b, Q^2)$$

- Very rapid increase of structure functio
- at low x
 - \rightarrow Very significant increase in σ as
 - → s increases
- Rough rule of thumb: a factor 2 in s is
- equivalent to a factor ~10 in luminosity
- Energy limited by tunnel size and dipole field
 - LHC must run at a very high luminosity
- Full "design" luminosity: 10³⁴ cm⁻²s⁻¹
- P.Bloch IMFP05 SLHC (> 2015?) luminosity: 10³⁵cm⁻²s⁻¹

LHC Layout and Parameters

$$L = \frac{\gamma f k_b N_p^2}{4\pi\varepsilon_n \beta^*} F$$

f revolution frequency no. of bunches k_b N_p no. of protons/bunch norm transverse emittance ε_n β^* betatron function F reduction factor xing angle

Magnetic Field p(TeV) = 0.3 B(T) R(km)For p= 7 TeV, R= 4.3 km ➡ B = 8.4 T

P.Bloch IMFP05

Energy at collision	Е	7	Te∖	
Dipole field at 7 TeV	B	8.33	Т	
Luminosity	L	10 ³⁴		
	cm ⁻² s	cm ⁻² s ⁻¹		
Beam beam parameter	ξ	3.6	10 -3	
DC beam current	I _{beam}	0.56	Α	
Bunch separation	, o call	24.95	ns	
No. of bunches	k _b	2835		
No. particles per bunch	Ň _p	1.1	10 ¹¹	
Normalized transverse	ε'n	3.75	μm	
emittance (r.m.s.)				
Collisions				
β-value at IP	β*	0.5	m	
r.m.s. beam radius at IP	σ*	16	μ m	
Total crossing angle	ф	300	µra	
Luminosity lifetime	τ_{I}	10	h	
Number of evts/crossing	n _c	17		
Energy loss per turn		7	keV	
Total radiated power/bean	n	3.8	kW	
Stored energy per beam		350	MJ	

Timeline for Year 1 of LHC Running

1st Beam to 1st Collisions (Pilot Run)

t₀=Apr-Jun 2007

Single Beam: t₀ to t₀+2mo. **Machine:** Set-up the machine for safe operation **Experiments:** Synchronization, beam-gas studies and rejection, vacuum quality, profile of beam-gas interactions, muon halo triggers, catalogue any detector problems

Colliding Beams: t_0+2 mo to t_0+3 mo.

Machine: One bunch on one bunch \rightarrow 43 x 43 at close to nominal bunch intensity with zero crossing angle \rightarrow carefully squeeze beams **Experiments:** Synchronization, record first pp collisions! Catalogue detector problems

Colliding Beams: t_0 +3mo to t_0 +4mo.

Machine: Introduce crossing angle and larger no. of bunches 75 ns, 936 bunches or 25 ns, 2808 bunches at few x 10³² cm⁻² s⁻¹, Scrubbing to address electron cloud issues? **Shutdown (3 mo.)**

1st Collisions to 1033 cm-2 s-1 (Physics Run > t0 = 7mo).

Increase bunch intensities. When pileup becomes > 2 evts/crossing move to 25ns, 2808 bunches

Run for ~ 7 mo. (integrating ~ 10fb-1 per ATLAS/CMS)

Just before a 'LONG' shutdown conduct a 2-week Pb-Pb run

P.Bloch IMFP05

Experiments: Synchronization, set-up for physics running, 'pilot' physics

2. Physics Requirements

What should be detected ?

- Benchmark processes
- Detector requirements

Requirements for LHC detectors: SM Higgs Boson

Decays & discovery channels

- Higgs couples to m²_f
 - Heaviest available fermion (b quark) always dominates
 - Until WW, ZZ thresholds open
- Low mass: b quarks→ jets; poor resolution , background
 - Only chance is EM energy (use γγ decay mode)
- Once M_H>2M_z, use this
 - W decays to jets or lepton+neutrino (E_T^{miss})

SM Higgs Boson: decay channels

Fully hadronic final states dominate but cannot be used due to large QCD bkg. ⇒look for final states with isolated leptons and photons despite smaller BR

 $\begin{array}{l} \mbox{Region 1: Intermediate mass region (LEP limit 114.5 GeV < m_H < 2 m_Z)} \\ m_H < 120 \ GeV: pp \rightarrow WH \rightarrow \ell_V \ bb \ or \ tt \ H \rightarrow \ell_V X \ bb \ (associated production) \\ m_H < 150 \ GeV: \ H \rightarrow \gamma\gamma, \ Z\gamma \\ 130 < m_H < 2 \ m_Z : \ qq \rightarrow qqH \ with \ H \rightarrow \tau\tau, \ H \rightarrow WW \ etc \\ 130 < m_H < 2 \ m_Z : \ H \rightarrow WW^* \rightarrow \ell_V \ \ell_V \\ 130 < m_H < 2 \ m_Z : \ H \rightarrow ZZ^* \rightarrow \ell\ell \ \ell\ell \end{array}$

```
Region 2: High mass region (2 m_z < m_H < 700)
H \rightarrow ZZ \rightarrow \ell \ell \ell \ell \ell
```

Region 3: Very high mass region (700 < m_H < 1 TeV) H \rightarrow ZZ $\rightarrow \ell \ell vv$, H \rightarrow ZZ* $\rightarrow \ell \ell$ jet-jet H \rightarrow WW $\rightarrow \ell v$ jet-jet

Benchmark: SM Higgs $\rightarrow \gamma \gamma$

Most promising channel for $m_H < 150 \text{ GeV}$

$$H \xrightarrow{t^*, W^*} \gamma \xrightarrow{t^*, W^*} t^*, W^* \gamma$$

(σ.B ~ 50.10⁻³ pb @ m_H ~ 150 GeV) ⇔ Signal: ~ 1000's of events/yr Backgrounds are large (2pb/GeV), H natural width is small (~MeV) ⇔ **excellent mass resolution** required

> $\sigma_m/m = 0.5 [\sigma_{E_1}/E_1 \oplus \sigma_{E_2}/E_2 \oplus \cot(\theta/2)\Delta\theta]$ \Rightarrow energy resolution and precise vertex localisation

Typical Cuts

2 isolated photons: $p_T > 25$, 40 GeV with $|\eta| < 2.5$ No track or em cluster with $p_T > 2.5$ GeV in a cone size $\Delta R = 0.3$ around γs

Good energy resolution, measurement of photon direction, π^0 rejection, efficient photon isolation

SM Higgs Boson $H \rightarrow ZZ^*$ or $ZZ \rightarrow 4I$

130 < M_H < 800 GeV

ZZ

 $\Gamma_{\rm H}$ (M_H=150 GeV) ~ 15 MeV Observed width is dominated by instrumental mass resolution

ZZ*

 $\Gamma_{\rm H}$ (M_H=500 GeV) ~ 65 GeV For M_H>350 GeV observed width is dominated by natural width

- Di-muon or di-electron mass
 resolution should be better than Γ₇
- Good momentum resolution for low momenta leptons
- Large geometric acceptance
- Efficient lepton isolation at hi-Lum

Very High Mass Higgs

An other example : SUSY Higgs Boson

H, $h \rightarrow \gamma \gamma$, bb (H \rightarrow bb in WH, t t H) $h \rightarrow \gamma \gamma$ in WH, t t $h \rightarrow \ell \gamma \gamma$ h. H \rightarrow ZZ^{*}. ZZ \rightarrow 4 ℓ h, H, A $\rightarrow \tau^+\tau^- \rightarrow (e/\mu)^+ + h^- + E_{\tau}^{miss}$ $\rightarrow e^+ + \mu^- + E_T^{miss}$ \rightarrow h⁺ + h⁻ + E_T^{miss} $H^+ \rightarrow \tau^+ \nu$ from t t $H^+ \rightarrow \tau^+ \nu$ and $H^+ \rightarrow t b$ for $M_H > M_{top}$ $A \rightarrow Zh$ with $h \rightarrow b\bar{b}$; $A \rightarrow \gamma\gamma$ H, A $\rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_2$ $\tilde{\chi}^0_i \tilde{\chi}^0_i$ $\tilde{\chi}^+_i \tilde{\chi}^-_i$ $H^+ \rightarrow \tilde{\chi}^+_2 \tilde{\chi}^0_2$ qq \rightarrow qqH with H $\rightarrow \tau^+ \tau^ H \rightarrow \tau \tau$, in WH, t t H

Isolated Leptons Abundance of b, τ Significant E_{Tmiss}

Summary of requirements

- Good electromagnetic resolution for |η|<2.5</p>
 - < 1% di-electron mass resolution at 100 GeV/c²
 - Primary vertex localization and/ or γ angular measurement
 - π^0 rejection
 - Lepton isolation
- Good muon identification and momentum resolution for |η|<2.5
 - < 1% di-muon mass resolution at 100 GeV/c²
 - Ability to measure unambiguously charge up to >1 TeV/c
- Good missing ET and di-jet mass resolution .
 - Large hadronic calorimeter coverage |η|~5
 - Lateral segmentation $\Delta \eta \mathbf{x} \Delta \phi < 0.1 \mathbf{x} \mathbf{0.1}$
- Good charged particle reconstruction in inner tracker
 - B and τ tagging (pixel detector)

3. Experimental Challenges

- Pile up of minimum bias events
- Radiation hardness
 - Impact on detectors
 - Rad-hard electronics
- Selectivity of physics
- Data Acquisition

pp cross section and min. bias

- # of interactions/crossing:
 - Interactions/s:
 - Lum = 10^{34} cm⁻²s⁻¹= 10^{7} mb⁻¹Hz
 - **o(pp) = 80 mb**
 - Interaction Rate, R = 8x10⁸ Hz
 - Events/beam crossing:
 - ∆t = 25 ns = 2.5x10⁻⁸ s
 - Interactions/crossing=20

Operating conditions: (1) A "good" event containing a Higgs decay + (2) ~ 20 extra "bad" (minimum bias) interactions

pp collisions at 14 TeV at 10³⁴ cm⁻²s⁻¹

- 25 min bias events overlap
- H→ZZ

- **Ζ** →μμ
- $H \rightarrow 4$ muons:
- the cleanest
- ("golden")
- signature

Impact on detector design

- LHC detectors must have fast response
 - Otherwise will integrate over many bunch crossings → large "pile-up"
 - Typical response time : 20-50 ns
 - → integrate over 1-2 bunch crossings → pile-up of 25-50 min-bias
 - \rightarrow very challenging readout electronics
- LHC detectors must be highly granular
 - Minimize probability that pile-up particles be in the same detector element as interesting object (e.g. γ from H $\rightarrow \gamma\gamma$ decays)
 - \rightarrow large number of electronic channels ex: CMS ~40x10⁶
 - \rightarrow high cost

Radiation levels

- LHC detectors must be radiation resistant:
 - high flux of particles from pp collisions → high radiation environment e.g. in forward calorimeters:
 - up to 10¹⁷ n/cm² in 10 years of LHC operation
 - up to 10⁷ Gy (1 Gy = unit of absorbed energy = 1 Joule/Kg)
 - decreases like distance² from the beam → detectors nearest the beam pipe are affected the most

Radiation Levels: Dose

Dose (Gy) in CMS for an integrated luminosity of 5.10⁵ pb⁻¹ (~ 10 years)

P.Bloch IMFP05

Radiation Levels: Neutron Fluence

n fluence (E>100 keV) in CMS for an integrated luminosity of 5.10⁵ pb⁻¹ (~ 10 yr)

Radiations: Impact on detectors

- May need special environment for long term viability
 - ex: silicon must be run at low temperature (-10°C) to limit leakage current and avoid reverse annealing (= high bias operation)
- Deteriorates performances & Induces time-dependent variations
 - ex : attenuation of light transmission in crystals or scintillators
- Forbids the use of some rather usual materials
 - Many plastics or glues (ex: loctite) are not radiation hard.
 - Tantalum capacitors are forbidden !
 - Some materials become highly activated by neutrons ; their use would prevent maintenance. ex: Ag
- Restricts access for maintenance (high reliability as space expt)
- Need quality control for every piece of material
- Passive elements are the most dangerous as one tends to
 P.Bloch IMFP05
 - Detector + electronics must survive 10 years of operation

Impact of radiations on electronics (1) Latch-up and SEU

Latch-up can affect all technologies

- charging of surface layers influences charge in substrate
- parasitic bipolar devices draw current, and can be <u>destructive</u>
- Needs to be avoided by technology design
- Single event effects non-permanent
 - large ionisation charge deposited within device, usually from recoiling ion
 - Some of the charge collected on sensitive circuit node
 - Influences voltage and <u>can change state of node (Important for</u> digital logic)
 - Essentially undetectable at the time
 - Must be mitigated by design, for example majority (triple voting) logic circuits

Impact of radiation in electronics (2) Bipolar transistors

- Transistor operation
 - Carriers flow from emitter to collector, via base
 - Recombination in base controls transistor action (gain)
- Effects of radiation
 - Hadrons cause atomic displacement
 - Traps (band gap energy levels)
 - Increased carrier recombination in base

- gain degradation, transistor (mis-)matching, dose rate dependence
- NB bipolar processes can also be sensitive to surface effects
 - like CMOS

Deep Sub-micron CMOS electronics

- Inversion layer is so shallow that bulk damage has no effect
 so CMOS is hard against neutrons
- Real oxide contains trapped (positive) charge at interface
 - Compensated for during manufacturing process
- Charged particle and gamma irradiation generates carriers in oxide
 - become trapped at Si-SiO₂ interface
 - interface traps influence short-term behaviour
 - details depend on bias
- Consequences
 - threshold (gate) voltage shift,
 - leakage current through or around transistor (especially NMOS)

Challenges: Selectivity

- Cross sections for various physics processes vary over many orders of magnitude
 - Inelastic: 10⁹ Hz
 - ♦ W→ℓ ν: 10² Hz
 - t t production: 10 Hz
 - Higgs (100 GeV/c²): 0.1 Hz
 - ♦ Higgs (600 GeV/c²): 10⁻² Hz
- Selection needed: 1:10^{10–11}
 - Before branching fractions...

Challenges Data Acquisition

4. Choice of Magnet and Muon system

- ATLAS and CMS detectors
- Choice of Magnet
- Muon detection performance
- Muon systems

ATLAS & CMS detectors

- Basic principle: need "general-purpose" experiments covering as much of the solid angle as possible ("4π") since we don't know how New Physics will manifest itself
 - \rightarrow detectors must be able to detect as many particles and signatures as possible: e, μ , τ , ν , γ , jets, b-quarks,
- Momentum / charge of tracks and secondary vertices (e.g. from bquark decays) are measured in central tracker (Silicon layers plus gas detectors).
- Energy and positions of electrons and photons measured in electromagnetic calorimeters.
- Energy and position of hadrons and jets measured mainly in hadronic calorimeters.
- Muons identified and momentum measured in external muon spectrometer (+central tracker).
- Neutrinos "detected and measured" through measurement of missing transverse energy (E_T^{miss}) in calorimeters.

'Cylindrical_Onion-like' Structure of HEP Experiments

Each layer identifies and enables the measurement of the momentum or energy of the particles produced in a collision

P.Bloch IMFP05

The ATLAS Detector

The CMS Detector

Designing an LHC experiment

THE issue: measure momenta of charged particles (e.g. muons); so which measurement "architecture"?

ATLAS

Standalone p measurement; safe for high multiplicities; Air-core torroid Property: σ flat with η

COIL COIL Precision central tracking CAL IRON precision tracking

CMS

Measurement of p in tracker and B return flux; Iron-core solenoid Property: muon tracks point back to vertex

Momentum measurement

- Toy detector with 3 points measured, each with σ_p : $\sigma_s = \sqrt{\frac{3}{2}}\sigma_p$ $\frac{\sigma(P_T)}{P_T} \approx 4\sqrt{3} \sigma_x \frac{p_T}{0.3BL^2}$
- In more realistic detector with N points (equally spaced): $\frac{\sigma(P_T)}{P_T} \approx \sqrt{\frac{720}{N+4}} \sigma_x \frac{p_T}{0.3BL^2}$

Choice of magnet (I)

Basic goal: measure 1 TeV muons with 10% resolution

- ATLAS: ~0.6T over 4.5 m → s=0.5mm → need σ_s <50µm
- Ampere's thm: $2\pi RB = \mu_0 nI \rightarrow nI = 2x10^7 At$
- With 8 coils, 2x2x30 turns: I=20kA (superC)
- Challenges: mechanics, 1.5GJ if quench, spatial & alignment precision over large surface area

P. Bloch IMFP05

Choice of magnet (II)

Torroid: gives flat σ vs η:

But: (a) does not benefit from beam spot (20 μm @ LHC)
 (b) need additional solenoid for internal track measurement

- ATLAS: B=2T solenoid
- ATLAS Calorimetry: outside solenoid

ATLAS Muon System: Performance

Resolution limited by : m.m. and Energy Loss Fluct. @ 3% for $10 < p_T < 250 \text{ GeV/}c$ Chamber Resolution and Alignment for $p_T > 250 \text{ GeV/}c$ The muon spectrometer resolution dominates for $p_T > 100 \text{ GeV}/c$

P.Bloch IMFP05

Choice of magnet (I)

Basic goal: measure 1 TeV muons with 10% resolution

- CMS: B=4T over 1.2m + 2T over 3m
- Needs $\sigma_s = 100 \mu m$
- Solenoid = measures P_t (and becomes worse in P as η increases)

- B= μ_0 nI; @2168 turns/m \rightarrow I=20kA (SuperC)
- •Challenges: 4-layer winding to carry enough I, design of reinforced superC cable

•2.4 GJ

Choice of magnet (III)

Solenoid:

Bending in transverse plane Use 20µm beam spot redundancy

■ Iron-core → multiple scattering

Tracking in magnetized iron:

$\frac{\Delta p}{p} = \frac{40\%}{B\sqrt{L}}$

• BUT measurement much better when combined with the tracker

42

A Slice through CMS

Calorimetry CMS inside solenoid

ATLAS: Toroid Coils

ATLAS: Toroid Coils

CMS Solenoid Assembly

CMS Solenoid Coil

Coil Reception ceremony March 1st 2005 at CERN

Magnet will be complete and tested Fall 05

Muon system

- Muon identification should be easy at L=10³⁴cm⁻²s⁻¹
 - Muons can also be identified inside jets
 - b-tagging, also control efficiency of isolation cuts
- Factors that affect performance
 - Level-1 trigger
 - Rate from genuine muons (b,c $\rightarrow\mu$) is very high. Must make a P_T cut with very high efficiency, and a flexible threshold (P_T in the range 5-75 GeV)
 - Pattern recognition
 - Hits can be spoiled by correlated backgrounds: δ's, EM showers, punchthrough. Uncorrelated bkgs: neutrons and associated photons
 - Momentum resolution
 - High momenta: need large int(B.dl); good chamber resolution (<100μm) and alignment. Low momenta: inner tracking better
- Both detectors: multiple stations with multiple hits (angular measurement)

Identification of Muons

Muons identified by their penetration through about 10 λ of calorimeter material. The material of calorimeters absorbs the e's, γ 's and h[±].

Energy Loss in Absorber

- for $E_{\mu} \leq 20\text{--}30~\text{GeV}$ energy loss fluctuations dominate
- high energy muons generate their own background.

Hard bremstrahlung (catastrophic energy loss) can spoil μ -tracking. The critical energy for μ in Fe is $E_c \approx 350$ GeV.

Hadron Punch-through

Debris from hadronic showers can accompany muons leading to:

- mis-identification of hadron as µ
- confusion and difficulty in matching $\mu\text{-tracks}$ (in jets)
- increase in µ trigger rate

Hadron Punchthough

ATLAS Muon Detectors

Each detector has 3 stations. Each station consists of 2-4 layers.

Precision chambers

P.Bloch IMFP05

Monitored Drift Tubes ($|\eta| < 2$) with a single wire resolution of 80 μ m 1194 chambers, 5500m² Cathode Strip Chambers (2 < $|\eta|$ < 2.7) Thin Gap Chambers (1.05 < $|\eta|$ < at higher particle fluxes 2.4) 32 chambers, 27 m^2 1584 chambers, 2900 m²

Trigger chambers

Resistive **P**late Chambers ($|\eta| < 1.05$) with a good time resolution of 1 ns 1136 chambers, 3650 m² at higher particle fluxes

ATLAS Muon System: Monitored Drift Tubes

End-cap MDT chamber

Figure 5-2 Drift tube operation in a magnetic field with curved drift path.

 $\phi_{wire} = 50 \mu m$ (W-Re) 3 bar, 3270V, $t_d = 500 ns$ Gas gain = 2.10⁴

Measured Spatial Resolution

Figure 5-4 MDT resolution as a function of the drift distance, fo an Ar/N2/CH4 (91/4/5 mixture). The curves correspond to two discriminator threshold settings.

P.Bloch IMFP05

CMS Muon System

250 DTs 468 CSCs 480 RPCs

P.Bloch IMFP05

CMS Muon System: Drift Tubes

CMS Muon System: CSC's

