5. Calorimetry

Electromagnetic calorimeters

- General considerations
- ATLAS Lar
- CMS crystals
- Hadronic calorimetry
 - Jets
 - Missing Et

ATLAS Calorimeters

ECAL

Accordion Pb/LAr $|\eta| < 3.2, 3 \text{ samplings}$ S1: $\Delta \eta x \Delta \phi = 0.025 \times 0.1$ S2: $\Delta \eta x \Delta \phi = 0.025 \times 0.025$ S3: $\Delta \eta x \Delta \phi = 0.05 \times 0.025$

HCAL

Barrel: Fe/Scintillator with WLS fibre readout 3 samplings - $\Delta\eta x \Delta \phi =$ 0.1x0.1 **Endcap**: Fe/LAr **Forward**: W/LAr 3.1< $|\eta|$ <4.9 $\Delta\eta x \Delta \phi = 0.2x0.2$

CMS Calorimeters

Electromagnetic cascades

A high energy e or γ initiates a cascade of e and γ 's via bremsstrahlung and pair production until they fall below critical energy Ec

Characteristic length $X_0 \equiv$ radiation length Shower can be fully measured or sampled.

Needs a depth of > 25 X₀ to contain a high energy em shower

Moliere Radius: average lateral deflection of critical energy electrons after 1 X₀ Characteristic of lateral development

Energy Resolution of Calorimeters

Parametrisation of the energy resolution of calorimeters:

 $\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \otimes \frac{\mathbf{b}}{E} \otimes \mathbf{c}$

symbol \oplus implies the quadratic sum of the three terms on rhs

'stochastic or sampling' term (coeff. a) accounts for

• the statistical fluctuation in the number of primary signal generating processes

'noise' term (coeff. b) includes

- the energy equivalent of the electronics noise and
- pileup the fluctuation of energy entering the measurement area from other sources

'constant' term (coeff.c) accounts for

- non-uniformity of signal generation and/or collection
- the cell to cell inter-calibration error
- the fluctuation in the amount of energy leakage
- •fluctuation in the e.m. component for hadronic showers
- The tolerable value of the 3 terms depends on the energy range of interest.
- Such parametrisations allow the identification of the causes of resolution degradation.
- Quadratic summation implies independent contributions which may not be the case.

Electron Reconstruction

Reconstruction of electrons that radiate little (and unconverted γ s) is simple : **collect energy in an array of 3x3 or 5 x 5 cells** centred on ~ impact point

For 'bremming' e's and converting γ 's, challenge is in coping with the combined result of tracker material and the magnetic field

- problem is not energy loss but spraying/spreading of energy

ATLAS: LAr sampling Em Calorimeter

Accordion geometry benefits : No cracks in φ Challenge: constant Ar gap, very precise mechanics Advantage : good stability

ATLAS LAr Calorimeter: signal shaping

Induced current duration = electron drift time t_d (~450 ns for ATLAS) with a triangular shape

Bipolar preamp-shaper (RC-CR) with zero area to avoid baseline shift by pileup

For $t_p \ll t_d$ Output response essentially derivative of current pulse . Max proportional to I_0

ATLAS: LAr Calorimeter

Assembly of the first HEC wheel (horizontal)

LAr EM half barrel after insertion into the cryostat

ATLAS : solenoid and LAr in common cryostat

(The ECAL is AFTER the coil)

ATLAS: LAr Calorimeter

CMS : crystal PbWO₄ em calorimeter

•Excellent energy resolution (

•Structural compactness, easy assembly

•Tower structure, fine transverse granularity

PbWO4

- Fast scintillation
- Small X₀ and R_m
- Intrinsic radiation hardness
- Relatively easy to grow
- Massive production capability
- Low Light Yield
- Strong L.Y. dependence on T
- Small loss of transparency with radiation
- [No longitudinal segmentation], no anglar measurement

Parameter		Value
Radiation length	cm	0.89
Moliere radius	cm	2.2
Hardness	Moh	4
Refractive index		2.3
Peak emission	nm	440
% of light in 25 ns		80%
Light yield (23 cm)	γ/MeV	100

CMS ECAL Structure

CMS: Crystals & APDs

CMS: ECAL Module and Supermodule

CMS ECAL: Performance

3 x 3 Crystals

Goal

0.85 mm at 50 GeV

CMS ECAL : Need for light monitoring

Colour centres form in PWO under irradⁿ Transparency loss depends on dose rate Equilibrium is reached after a low dose Partial recovery occurs in a few hours

Damage and recovery during LHC cycles tracked with a laser monitoring system

2 lasers provide 4 wavelengths: 440/495 nm and 700/800 nm

Light is injected into each crystal

Stability monitored with PN diodes (0.05%)

Simulation for high luminosity at $\eta = 0$ based on test beam results 1.02 support Laser monitoring CRISTAL 1861 △ ● electrons "Filling" telative 86°0 Ň 0.96 0.94 Time scale for calibration with physics events

4000

6000

69

Time (100 sec)

2000

0

ECAL Calibration : CMS example

Laser monitoring:

Correct for variations in crystal transparency due to irradiation

Hadronic cascades

Similar to em shower but strong interaction responsible for cascading effect : Multi-particle production (π^0 , π^{\pm} , K etc..) & nuclear break up until π production threshold

Characteristic length λ =nuclear interaction length

About 10 λ necessary to contain 99% of energy of 200 GeV pion

High pt quarks/gluons hadronize giving narrow <u>JETS</u>

Hadronic Calorimetry

- Hadron calorimeter requirements
 - Jet energy resolution: limited by jet algorithm, fragmentation, magnetic field and pileup at high luminosity
 - A good figure of merit: width of the jet-jet mass distribution
 - → Low- p_T jets: W, Z → Jet-Jet, e.g. in top decays

→ High-p_T jets: Z' → Jet Jet (M(Z')~1 TeV)

- At very high-p_T: need fine lateral granularity (for very collimated jets)
- Missing transverse energy resolution
 - Gluino and squark production/decay
 - → Forward coverage to $|\eta|$ <5
 - → Hermeticity minimize cracks and dead areas
 - → Absence of tails in energy distribution: more important that a low value in the stochastic term
 - Good forward coverage required to tag processes from vector-boson fusion

Jet Reconstruction

60

40

20

0

0

Classical 'cone' algorithm - jet built around a seed • parameters: E_T^{seed} cut, cone opening radius ΔR

ATLAS: $W \rightarrow jet-jet$ mass resolution

Jet Energy Measurement: Energy Flow

Add energy of charged tracks that bend out of cone (use p meas by tracker) Replace energy measured in calo for track in cone by p measured in tracker

Significant improvement for jets at low E_T

Missing E_T

Missing E_T resolution

γ-Jet Rejection I

For $H \rightarrow \gamma \gamma$ Large Reducible Background from γ -jet and jet-jet

need large γ-jet
 separation (essentially
 γ-π⁰ separation) to reject
 jets faking photons

γ-Jet Rejection

Cuts (ATLAS)

$$\begin{split} & \mathsf{E}_{\mathsf{T}\gamma\mathsf{1}}, \mathsf{E}_{\mathsf{T}\gamma\mathsf{2}} > 40, \, 25 \text{ GeV with } |\eta| < 2.5 \\ & \mathsf{E}_{\mathsf{H}\mathsf{1}}/\mathsf{E}_{\mathsf{em}} < \mathsf{f}_{\mathsf{cut}} \text{ (little/no had activity)} \\ & \mathsf{E}_{\mathsf{em2}}{}^{3x3/} \, \mathsf{E}_{\mathsf{em2}}{}^{7x7} \text{ (shower size)} \\ & \mathsf{Shower width in } \eta \end{split}$$

Track Veto (no chrg trk $p_T > p_{Tcut}$)

ATLAS EM calorimeter

4 mm η-strips in first compartment3 longitudinal segments

 \Rightarrow (γ -jet + jet-jet) < 40% $\gamma\gamma$

$\gamma - \pi^0$ Separation

Isolated π^{0} 's - detect presence of 2 em showers.

CMS Barrel

- use fine transverse crystal granularity (2.2×2.2 cm²)
- Compare energy deposited by single γ and π° in 3×3 crystal array
- variables 9-energies, x and y position, and a pair measuring the shower width

CMSPreshower module

CMS Endcap

 use preshower - two planes of Si strips with fine pitch (≈2mm) compare signal (summed in 1,2 or 3 adjacent strips with the total signal in 21 adjacent strips centred on strip with highest signal

ATLAS: Tilecal

Fe absorber with scintillator tile readout with $\Delta \eta \propto \Delta \phi = 0.1 \propto 0.1$, 3 longitudinal samplings, $|\eta| < 1.7$

ATLAS: Tilecal Assembly

ATLAS: Calorimeter Performance

Combined Test:

EM LAr and Hadronic Tile Calorimeter

 π Energy Resolution

 $\sigma/E = a/\sqrt{E} \oplus b \oplus c/E$

	(%GeV ^{1/2}	b (%)	c (GeV)
Data	69.8 ±	3.3 ±	1.8±
	0.2	0.2	0.1
G-	61.7 ±	2.9 ±	1.5
CALOR	0.1	0.3	fixed

 e/π ratio Degree of non-compensation e/h

$$e/\pi = \frac{e/h}{1 + (e/h - 1) \cdot F(\pi^0)}, F(\pi^0) = 0.11 \cdot \ln E$$

CMS HCAL

Routing of clear fibres to optical disconnects

WLS fibres Embedded in plastic scint. plates

Central Region ($|\eta|$ <3) : Brass/Scintillator with WLS fibre readout, projective geometry, granularity $\Delta \eta \times \Delta \phi = 0.0875 \times 0.0875$ P.Bloch IMFP05

Forward Jet Tagging

CMS: Very Forward Calorimeter

Fibres insertion in HF wedges

Forward Region (3<|η|<5): Fe/Quartz Fibre, Cerenkov light

6. Tracking

ATLAS and CMS have chosen different options

- CMS: 10-14 points, but extremely precise (< 30 μm) in Rφ and low occupancy measurements (all silicon)
- ATLAS: fewer (4) "clean" points at small radius (<50 cm), followed by ~ 40 points with smaller precision (50 μm) and larger occupancy (TRT straw tubes)
- Both have 3 layers of pixels between 4cm and ~25 cm
- Silicon ST and pixels must be run at low Temperature (-10°C) to avoid long term deterioration by radiation.
 - This induces large material budget (cooling pipes and ledges)

CMS Tracking

Few, very precise and clean measurements layers.

◆ 2-3 Silicon Pixel & 10-14 Silicon Strip Measurement Layers

Radius ~ 110cm, Length ~ 270cm

210 m² of Si strips

ATLAS Tracker Layout

Pixel detectors

- Both ATLAS and CMS
 - Very close to beam pipe (first point at 4cm)
 Different scenario for
 High luminosity
- Small pixel size (150μm).
 Occupancy: 10⁻⁴. Resolution: ~20μm.
- Pixels are essential for HLT and Pattern .Recognition

Module with DSM ROC on a module handle

CMS Tracking Requirements

Efficiency: need low, ~few % occupancy; Resolution

Twelve hits; 4T field spatial resolution: (pitch/ √12) Radius: 110 cm →momentum resolution:

$$\frac{\Delta p}{p} \approx 0.12 \left(\frac{pitch}{100\,\mu m}\right)^1 \left(\frac{1.1m}{L}\right)^2 \left(\frac{4T}{B}\right)^1 \left(\frac{p}{1Tev}\right)$$

 \rightarrow Need pitch ~100 μ m.

small radii: need cell size < 1cm² + fast (~25ns) shaping time condition is relaxed at large radii

Strip size

- Strip length: 10cm (inner layers) to 20cm (outer layers).
- Pitch: 80µm (inner layers) to 200µm (outer layers)

CMS Tracker performance

ATLAS Tracker Performance

b jet identification

ATLAS ു പ്പുക u-jet rejection _f40 **4**20 100 80 o M_H=120 GeV^I 60 + m_H=400 GeV 40 combined 20 150 250 30 ρ_T (GeV) 50 100 200 300

Rejection of c jets limited by $\tau_c^{\epsilon_b}$ Rejection of g jets limited by g-splitting: (a) kinematics of M_H=400 GeV, BR(g \rightarrow cc)=6% BR(g \rightarrow bb)=4%

P.Bloch IMFP05

Significant dependence on jet p_T:

- Balance between multiple scattering (low p_{T}) and pattern recognition effects (high p_{T})
 - Very dense jets at high energy
 - Best rejection around 100 GeV
 - Little intrinsic dependence on boson mass

CMS Tracker Production: Automation

Glue dispensing syringes

CMS Tracker: Some Components

Barrel TIB

ATLAS Tracker: Some Components

SCT barrel system test

Two of the SCT barrel support structures

The black point: material in Trackers

7. Trigger and DAQ

- Challenge
- ATLAS and CMS different strategies

Trigger/DAQ requirements/challenges

- N (channels) ~ O(10⁷); ≈20 interactions every 25 ns
 - need huge number of connections
 - need information super-highway
- Calorimeter information should correspond to tracker info
 - need to synchronize detector elements to (better than) 25 ns
- In some cases: detector signal/time of Flight > 25 ns
 - integrate more than one bunch crossing's worth of information
 - need to identify bunch crossing...
- Can store data at ~ (1-2)x10² Hz
 - need to reject most interactions
- It's On-Line (cannot go back and recover events)
 - need to monitor selection

Online Selection Flow in pp

• Level-1 trigger: reduce 40 MHz to 10⁵ Hz

- This step is always there
- Upstream: still need to get to 10² Hz; in 1 or 2 extra steps

Three physical entities

 Additional processing in LV-2: reduce network bandwidth requirements

Investments in control logic and specialized processors
 P.Bloch IMFP05

Two physical entities

- Reduce number of building blocks
- Rely on commercial components (especially processing and communications)

-Investments in bandwidth and commercial processors

Level-1 Trigger

Level-1 Isolated Trigger

Level-1 Muon Trigger

Trigger based on tracks in external muon detectors that point to interaction region

- Low-*p*_T muon tracks don't point to vertex
 - Multiple scattering
 - Magnetic deflection
- Two detector layers
 - Coincidence in "road"

Detectors: RPC (pattern recognition) DT(track segment)

CMS Level-1 Muon Trigger: DT

3D-EVB: DAQ architecture

8. LHCb experiment

LHCB magnet

LHCb

- Dedicated B physics experiment L = 10³² cm⁻² s⁻¹
- Detector
 - 21 layers Silicon microstrip detector (Vertex)
 - Straw tubes tracking detector
 - <u>RICHs for particle ID;</u>
 - aerogel , C4F10 and CF4 gas radiators
 - Read by HPDs (1000 single photon pixels in 80mm diam. tube)
 - Em calorimeter (Shashlik lead scintillator sampling) with Sci Preshower
 - Hadron Calorimeter (tile, similar to ATLAS design)
 - Muon stations with MWPC

Dedicated Ion experiment

ALICE

- Central part for hadrons, e, $\gamma = [45^\circ, 135^\circ]$, full azimuth
 - Embedded in L3 magnet
 - Tracking:
 - ITC silicon pixels, drift and strip Si detectors
 - Large TPC
 - Particle ID
 - TOF (TOFPID)
 - RICH (HMPID) (partial azimuth)
 - TRD
 - Single arm calorimeter (PHOS) (partial azimuth)
 - Zero Degree calorimeters ZDC and Particle Multiplicity Detector
- Forward Muon Spectrometer

ALICE forward Magnet

Summary

It was a long way from the initial ideas to the detectors construction.

- Many today's achievements seemed pure dreams 15 yrs ago !
- A set of unprecedented challenges
 - From the rate of events, to the selectivity, to the hostility of the environment and the need for very high resolutions and acceptances, a very difficult job
- Simulation says that ATLAS and CMS will probe the Physics that the LHC will deliver very effectively
- Current issues: calibration, alignment, initial run scenarii etc...
 - Installation and commissioning of the detector.
 - And then: control and monitor...