

Marcello A. Giorgi Università di Pisa and INFN Pisa

presented at XXXIII International Meeting On Fundamental

Physics

Benasque (High Pyrenees), Aragon, Spain, March 6-11, 2005

10,03,2005 Benasque Aragon

INFN

B meson environment is a beautiful laboratory

- Sizable mixing and CP violation
- HQET works and has predictive power
- Many transitions probe different quantities

e⁺e⁻ machines are fantastic probes

- Very clean environment: ½-track trigger
- Coherent initial state allows true interference measurements and high tagging efficiency with low dilution

Luminosity counts

- Large samples allow precision measurements
- Rare and very rare decays are becoming more and more
- crucial.

Yesterday

Experiments	Number of $b\overline{b}$ events	Environment	Characteristics
	$(\times 10^{6})$		
ALEPH, DELPHI	~ 1 per expt.	Z ⁰ decays	back-to-back 45 GeV b-jets
OPAL, L3		$(\sigma_{bb} \sim 6 { m nb})$	all B hadrons produced
SLD	~ 0.1	Z ⁰ decays	back-to-back 45 GeV b-jets
		$(\sigma_{bb} \sim 6 {\rm nb})$	all B hadrons produced
			beam polarized
ARGUS	~ 0.2	$\Upsilon(4S)$ decays	mesons produced at rest
		$(\sigma_{bb} \sim 1.2 { m nb})$	B^0_d and B^+
CLEO	~ 9	$\Upsilon(4S)$ decays	mesons produced at rest
		$(\sigma_{bb} \sim 1.2 { m nb})$	B^0_d and B^+
CDF	\sim several	$p\overline{p}$ collisions	events triggered with leptons
		$\sqrt{s} = 1.8 \text{ TeV}$	all B hadrons produced

10,03,2005 Benasque Aragon Marcello A Giorgi

Today

DØ Detector

Tomorrow ????

- What:
 - PEP-II/Babar & KEK-B/Belle currently at peak luminosity 10^{34} cm⁻²s⁻¹ ± 10% and at the end of 2006 2.0 10^{34} cm⁻²s⁻¹ ± 10%
 - Integrated sample of $> 1ab^{-1}$ expected for each machine by 2009
 - Upgrade ideas/proposals to increase luminosity by a factor 10 to 100, for a sample size of 5-50 ab⁻¹.
- Why:
 - High precision Standard Model Unitarity Triangle (UT) measurements
 - New Physics (NP) contributions to rare decays B.R. & Asymmetries.
 - Distinctive patterns may discriminate between models
- How:
 - Different upgrade scenarios are being considered: from 1.5×10^{35} to 10^{36}
 - Detector and machine complexity/cost undergo a phase transition around $1\div 2 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1..}$ Above that there are severe Detector issues.
- When:
 - in the era of LHCb, BTeV and LHC experiments.
 - Competitiveness and complementarity with hadron machines is a real issue.

Current luminosities and data samples

Total 244 + 286 fb⁻¹ = 0.530 ab^{-1} !! As AUGUST 2004 (ICHEP04)

Aragon

Since August 1st BABAR is not running.

- *BELLE* has resumed the operations in September 04 and has already collected more than 350 M of B pairs.
- Run 5 will start shortly. The plan is to run through July 31,2006 with one month down this fall. PEPII improvements already in place will allow the peak luminosity to grow to $1.3 \ 10^{34} \ \text{cm}^{-2} \ \text{s}^{-1}$ by the end of this run. Such an extended period is projected to allow the dubling of present sample by summer 2006 to about 530 fb⁻¹.

Running plan for 2005-2006 and beyond

Double data by summer 2006

Double again by summer 2008

PHYSICS MENU

- Unitarity Triangle sides measurements
 - From (semi)leptonic decays, inclusive or exclusive
 - $|V_{ub}|, |V_{cb}|, |V_{td}|$
- UT angles precision measurements
 - b \rightarrow s penguin transitions very sensitive to new physics
 - CPV Asymmetries in $B \rightarrow \phi K_s$, $K_s \pi^0$ compared with sin 2 β .
 - α measurement with B $\rightarrow \pi\pi$ and $\rho\rho$; direct CPV
 - γ measurement with B \rightarrow DK or similar channels.
- Rare decays
 - Exclusive and inclusive $b \rightarrow s\gamma$ BFs, direct asymmetries, photon helicities
 - Exclusive and inclusive $b \rightarrow sl^+l^-$ BFs, A_{FB} , CP asymmetries
 - *B* decays to states with large missing energy, such as $B_{(d,s)} \rightarrow \tau^+ \tau^-$, $B \rightarrow K^{(*)} \nu \nu$, $b \rightarrow s \nu \nu$, $B \rightarrow D^{(*)} \tau \nu_{\tau}$, $B \rightarrow X_C \tau \nu_{\tau}$
 - LFV in $\tau \rightarrow \mu \gamma$ and similar channels

Beautiful side of beauty factories

Impressive physics program achieved at B-Factories

- B mesons are a powerful laboratory
 - Sizable mixing and CP violation
 - HQET works and has predictive power
 - Many transitions probe different quantities
- e^+e^- machines are fantastic probes
 - Very clean environment: ½-track trigger
 - Coherent initial state allows true interference measurements and high tagging efficiency with low dilution The tagging quality factor $Q_T = \sum_i \varepsilon_i (1-2w)^2$ is 30.5% in BABAR it is 2% for CDF.
- Luminosity counts
 - Large samples allow precision measurements
 - Rare and very rare decays are becoming more and more crucial.

Marcello A Giorgi

Initial goals for B Factories

10,03,2005 Benasque Aragon

CP violation in B decays

10,03,2005 Benasque Aragon

Marcello A Giorgi

First observation of Direct CPV in B decays

Aragon

CP violation in the B system

Interference of $b \rightarrow c$ tree decay amplitude with mixing box diagram amplitude

10,03,2005 Benasque Aragon

sin2*B* results from charmonium modes

Aragon

Interference of color-allowed and color-suppressed tree decays

10,03,2005 Benasque Aragon Marcello A Giorgi

Methods for extraction of γ

10,03,2005 Benasque Aragon Marcello A Giorgi

Constraints on r_b and γ

$\sin 2\alpha$ from $B \rightarrow \pi\pi, \rho\pi, \rho\rho$

Results from $B \rightarrow \pi\pi$ and $\rho\rho$ decays

10,03,2005 Benasque Aragon Marcello A Giorgi

More on α from $\rho\pi$

In SM interference between *B* mixing, *K* mixing and Penguin $b \rightarrow s\bar{s}s$ or $b \rightarrow sdd$ gives the same $e^{-2t\beta}$ as in tree process $b \rightarrow c\bar{c}s$. However loops can also be sensitive to New Physics!

BABAR results for $B^0 \rightarrow \phi K^0$

Results on $sin 2\beta$ from s-penguin modes

10,03,2005 Benasque Aragon Marcello A Giorgi

A new mode: $B \rightarrow K_S K_S K_S$

Although 3-body decay, only L=even partial waves allowed: *CP* of final state known:

$$CP(K_SK_SK_S) = CP(K_S) = even$$

 $K_SK_SK_S$ theoretically clean as ΦK

 88 ± 10 signal events

Since there are not mesurable tracks from B-vertex IP constrained vertexing is used

25

Constrained Vertex technique

Same technique as $K_s \pi^0$ hep-ex/0408062

Decay products constrained to x-y beam spot:

 $J/\psi K_S$ used for control compare constrained vertex (using K_s) and the true J/ψ vertex

10,03,2005 Benasque Aragon

K_SK_SK_S

10,03,2005 Benasque Aragon **Marcello A Giorgi**

Update of the status

SM model predictions for some modes:model independent upper limits based on SU(3) flavor and measured $b \rightarrow dqq$ B.R.

[Grossman et al, Phys Rev D58; Grossman et al., Phys Rev D68; Gronau, Rosner, Phys.Lett. B564; Gronau et al., Phys.Lett.B579; Gronau, at al. Phys.Lett.B596; Chiang atal., Phys.Rev.D70

estimate of deviations based on specific models[Beneke at al., NPB591; Buras et al. NPB697; Ciuchini at al., hep-

ph/0407073] **10,03,2005 Benasque Aragon**

Marcello A Giorgi

Comment on averaging

- On purely dimensional considerations the corrections to the b→s penguins are ranging between 5% and 20%, on the other hand the sign of the corrections is far from been the same for different channels.
- As I mentioned at ICHEP averaging the results on penguins is something adventurous and not simply legitimate.
- The averaged value can be diluted and non reflecting the real amount of the difference from $\sin 2\beta$ value of charmonium.
- However the distance of the (*BABAR-BELLE*) average value of penguins of 3.9 σ from the w.a. sin2 β =0.726 is already something and intriguing.
- CP asymmetries in b \rightarrow s penguins will show perhaps the first indications of new physics.

Theoretical uncertainties

Measurement (in SM)	Theoretical limit	Present error
$B \to \psi K_S$ (β)	$\sim 0.2^{\circ}$	1.6°
$B ightarrow \phi K_S, \; \eta^{(\prime)} K_S$, (eta)	$\sim 2^{\circ}$	$\sim 10^{\circ}$
$B ightarrow \pi \pi, \ ho ho, \ ho \pi$ ($lpha$)	$\sim 1^{\circ}$	$\sim 15^{\circ}$
$B ightarrow DK$ (γ)	$\ll 1^{\circ}$	$\sim 25^{\circ}$
$B_s ightarrow \psi \phi ~~(eta_s)$	$\sim 0.2^{\circ}$	—
$B_s \rightarrow D_s K ~(\gamma - 2\beta_s)$	$\ll 1^{\circ}$	—
$ V_{cb} $	$\sim 1\%$	$\sim 3\%$
$ V_{ub} $	$\sim 5\%$	$\sim 15\%$
$B \to X \ell^+ \ell^-$	$\sim 5\%$	$\sim 25\%$
$B \to K^{(*)} \nu \bar{\nu}$	$\sim 5\%$	—

10,03,2005 Benasque Aragon Marcello A Giorgi

Ligeti, ICHEP 2004

PEP II Luminosity Projections

Projections for Penguin Modes

Projections are statistical errors only; but systematic errors at few percent level

10,03,2005 Benasque Aragon

SUPER BFACTORY ?

BABAR has shown that in the continuous injection operation mode and thanks to the data taking efficiency >98% is able to integrate in one year $10^7 x L_{peak}$. 7.0 $10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ corresponds to $10000 \text{ fb}^{-1}/\text{year}$.

After 7 months study in BABAR the preferred option is a

machine of 7.0 1035 cm-2 s-1 to integrate 10000 fb-1/year

and upgradable to investigate NP at a mass scale $\sim 1~{
m TeV}$

Luminosity	2-3x10 ³⁴	1.5x10 ³⁵	2.5x10 ³⁵	7x10 ³⁵	Units
e⁺	3.1	3.1	3.5	8.0	GeV
e⁻	9.0	9.0	8.0	3.5	GeV
Ĩ⁺	4.5	8.7	11.0	6.8	A
I -	2.0	3.0	4.8	15.5	A
β(γ *)	7	3.6	3.0	1.5	mm
β(x*)	30	30	25	15	сm
Bunch length	7.5	4	3.4	1.7	mm
# bunches	1700	1700	3450	6900	
Crossing angle	0	0	±11	±15	mrad
Tune shifts (x/y)	8/8	11/11	11/11	11/11	x100
rf frequency	476	476	476	952	MHz
Site power	40	75	85	100	MW

10,03,2005 Benasque Aragon PEPH

before 09

Possible Super B

Unitarity Triangle – Sides& Angles

Unitarity Triangle - Sides	Unitarity Triangle - Sides				<i>e</i> ⁺ <i>e</i> ⁻ Precision				
Measurement	Goal	l	3/ab	1	0/ab	50/ab			
V_{ub} (inclusive)	syst =5-6%		2%	1					
V_{ub} (exclusive) (π , ρ)	syst=3%		5.5%	3	8.2%				
$f_b \ \mathrm{B}(B \rightarrow \mu \nu)$	SM: <i>B</i> ~52	x10 ⁻⁷							
$F_b \operatorname{B}(B \to \tau \nu)$	SM: <i>B</i> ~52	x10 ⁻⁵	3.3 σ		6σ	$13\sigma f_b$ to ~1	10%		
$V_{td}/V_{ts} (\rho\gamma/K*\gamma)$	Theory 12%	, D	~3%	~1%					
Unitarity Triangle - Angles			e^+e^- Precision 1 Yes			1 Year P	r Precision		
Measurement		3/ab	10/a	b	50/ab	LHCb	BTeV	V	
$\underline{\alpha \ (\pi\pi)} (S_{\pi\pi}, B \rightarrow \pi\pi BR's + isos)$	pin)	6.7°	3.9	0	2.1°	-	-		
$\alpha (\rho \pi)$ (Isospin, Dalitz) (syst ≥ 3	°)	3, 2.3°	1.6, 1	.3°	1, 0.6°	2.5° -5°	4°		
$\alpha (\rho \rho)$ (penguin, isospin, stat+syst)		2.9°	1.5	C	0.72°				
$\beta(J/\psi K_S)$ (all modes)		0.3°	0.17	0	0.09°	0.57°	0.49	c	
$\gamma(B \rightarrow D^{(*)}K)$ (ADS)			2-3	0		~10°	<13°	>	
$\gamma(all)$			1.2-2	2°		7°	8°		
Theory: $\alpha \sim 1^{\circ} \beta \sim 0$	$2^{\circ} \gamma << 1^{\circ}$	÷				•	•		

10,03,2005 Benasque Aragon

CP Violation in $b \rightarrow$ s penguins

Rare Decays – New Physics – <i>CPV (?)</i>		e	<i>e</i> - Precisi	1 Year Precision		
Measurement	Goal	3/ab	10/ab	50/ab	LHCb	B TeV
$\underline{S(B^0 \rightarrow \phi K_{\underline{S}})}$	SM: <0.25 (0.05)	0.08	0.05	0.02 (?)	0.08?	0.04?
$S(B^0 \to \phi K_S + \phi K_L)$	SM:<0.25 (0.05)					
$S(B \rightarrow \eta' K_s)$	SM:<0.3 (0.1)	0.06	0.03	0.01		
$S(B \rightarrow K_S \pi^0)$	SM:<0.2 (0.15)	0.08	0.05	0.04 (?)		
$\underline{S(B \longrightarrow K_{\underline{S}} \pi^0 \gamma)}$	SM:<0.1	0.11	0.06	0.04 (?)		
$\underline{A}_{\underline{CP}}(\underline{b} \rightarrow \underline{s\gamma})$	SM: <0.6%	2.4%	1%	0.5% (?)		
$A_{CP}(B \rightarrow K^* \gamma)$	SM: <0.5%	0.59%	0.32%	0.14%	-	-
<i>CPV</i> in mixing (q/p)		<0.6%			Х	X

10,03,2005 Benasque Aragon Marcello A Giorgi

Projections for $b \rightarrow s$ penguins

Projections are statistical errors only; but systematic errors at few percent level

10,03,2005 Benasque Aragon Marcello A Giorgi

$b \rightarrow sl^+l^-$ precision measurements

New Physics – $K1^{+1}$, $s1^{+1}$		e+e	e ⁻ Precisio	1 Year Precision		
Measurement	Goal	3/ab	10/ab	50/ab	LHCb	BTeV
$\mathbf{B}(B \longrightarrow K\mu^{+}\mu^{-}) / \mathbf{B}(B \longrightarrow Ke^{+}e^{-})$	SM: 1	~8%	~4%	~2%	Х	Х
$A_{CP}(B \longrightarrow K^* l^+l^-) \text{ (all)}$ (high mass)	SM: < 0.05%	~6% ~12%	~3% ~6%	~1.5% ~3%	~1.5% ~3% (?)	~2% ~4% (?)
$\underline{A^{FB}(B \longrightarrow K^{*}l^{+}l^{-}) : s_{\underline{0}}}$	SM: ±5%	~20%	~9%	9%	~12%	
$A^{FB}(B \longrightarrow K^*l^+l^-) : A_{CP}$						
$A^{FB}(B \rightarrow sl^+l^-) : \hat{s}_0$		27%	15%	6.7%		
$A_{FB} \left(B \rightarrow sl^+l^- \right) : C_9, C_{10}$		36-55%	20-30%	9-13%		

NP observables in s/d l+l- decay

SUPER B Rare Decays

MEASUREMENT	Goal	3/ab	10/ab	50/ab
$\mathbf{B}(B \rightarrow D^* \tau \nu)$	SM: B: 8x10 ⁻³	10.2%	5.6%	2.5%
$B(B \rightarrow s \nu \nu)K, K^*$	SM:Theory ~5% 1 excl: 4x10 ⁻⁶			~30
$B(B \rightarrow invisible)$		<2x10 ⁻⁶	<1x10 ⁻⁶	<4x10 ⁻⁷
$\mathbf{B}(B_d \! \to \! \mu \mu)$		-	-	?
$\mathbf{B}(B_d \to \tau \tau)$		-	-	?
$\mathbf{B}(\tau \!\rightarrow\! \mu \gamma)$			<10-8	

Recoil Method as pure B beam

Aragon

Conclusions

• Babar has a promising future for the next 5 years

The experiment has become a "laboratory" with high capability of inventing new analyses

- A Super B-Factory at 10ab⁻¹/year or more has discovery potential:
 - *NP effects in loops are becoming accessible*
 - In LHC era
 - masses of NP from LHC experiments
 - *flavour experiments can give phases and also couplings.*
 - *further informations UT precision measurements* –
- Complementary and competitive with LHCB/
 - No B_s , but on remaining same or higher precision
 - Sample very clean (see. Recoil technique allowing pure B beam)
 - Access to channels with neutrals and neutrinos : γ , ν , π^0
 - no bias from selective triggers

• BACKUP

10,03,2005 Benasque Aragon

→ Theory error ~0.01 to 0.02 (??) (~30% of SM value of S)

10,03,2005 Benasque Aragon

