

Neutrinos Theory

Carlos Peña Garay IAS, Princeton

March 11, 2005

Benasque

References

Neutrino Unbound http://www.nu.to.infn.it/

Massive Neutrinos : Dirac

Standard Model + right handed

$$\mathcal{A}_{\nu} = i \overline{\nu}_{i} \gamma^{\mu} \partial_{\mu} \nu_{i} - \frac{g}{2\cos\theta_{W}} \overline{\nu}_{i} \gamma^{\mu} Z_{\mu}^{0} \nu_{i}$$

$$-\frac{g}{2\cos\theta_W}\bar{l}_i\gamma^{\mu}U_{ij}W_{\mu}^-\nu_i + \text{h.c.}$$

 $+ m_i \overline{\nu}_i \nu_i + h.c. + \dots$

$$m \,\overline{v} \,v = \frac{y \,v}{\sqrt{2}} (\overline{v}_R v_L + \overline{v}_L v_R)$$
$$P_{R,L} = \frac{1}{2} (1 \pm \gamma_5)$$

Standard Model + right handed

$$\mathcal{A}_{\nu} = i \overline{\nu}_{i} \gamma^{\mu} \partial_{\mu} \nu_{i} - \frac{g}{2\cos\theta_{W}} \overline{\nu}_{i} \gamma^{\mu} Z_{\mu}^{0} \nu_{i}$$
$$- \frac{g}{2\cos\theta_{W}} \overline{l}_{i} \gamma^{\mu} U_{ij} W_{\mu}^{-} \nu_{i} + h.c.$$
$$+ m_{i} \overline{\nu}_{i} \nu_{i} + h.c. + ...$$
$$m_{i} \overline{\nu}_{i} \nu_{i} = \frac{y}{\sqrt{2}} (\overline{\nu}_{R} \nu_{L} + \overline{\nu}_{L} \nu_{R})$$
$$P_{R,L} = \frac{1}{2} (1 \pm \gamma_{5})$$

Parameters : Dirac

m_i

$$U_{\alpha i} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{+i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Exercise.

 $m_0 \qquad \Delta m^2 \ge 0 \qquad \Delta M^2 \ge 0 \qquad 0 \le \theta_{ij} \le \frac{\pi}{2} \qquad 0 \le \delta \le \pi$

Wave packets : Neutrino osc.

$$\psi_i(x,t) = \int \frac{dp}{2\pi\sigma_p} e^{-\frac{(p-\langle p_i \rangle)^2}{4\sigma_p^2}} e^{-i(px-E_it)}$$

Relativistic neutrinos :

$$P(v_{\alpha} \rightarrow v_{\beta}) \sim \sum U_{\beta i}^{*} U_{\alpha i} U_{\alpha j}^{*} U_{\beta j} e^{-i\frac{\Delta m_{j i}^{2}}{2E}L} e^{-\frac{L^{2}}{32\sigma_{x}^{2}}\frac{(\Delta m_{j i}^{2})^{2}}{E^{2}}}$$
If $1_{\text{osc}} = \frac{4\pi E}{\Delta m^{2}} < 1_{\text{coh}} = 4\sqrt{2}\sigma_{x}\frac{E^{2}}{\Delta m^{2}} \Rightarrow \text{Osc.}$

$$\begin{cases} \text{if } 1_{\text{osc}} << L \Rightarrow \text{averageoscillations} \\ \text{if } 1_{\text{coh}} << L \Rightarrow \text{Incoherentpropagation} \end{cases}$$
Same result

Size of the wave packet Coherent neutrino emission in plasma : Interrupted by e.m interactions of the source particles (pressure broadening)

$$\sigma_{x} \sim \frac{1}{v} \sim \frac{\frac{1}{\pi N} \left(\frac{3T}{2Z_{1}^{2} Z_{2}^{2} e^{2}}\right)^{2}}{\sqrt{\frac{3T}{m}}} \sim 1.4 \cdot 10^{17} \frac{\sqrt{m} \left(\frac{T}{MeV}\right)^{3/2}}{Z_{1}^{2} Z_{2}^{2} \left(\frac{N}{cm^{-3}}\right)} \operatorname{Km} \approx 10^{-12} - 10^{-11} \operatorname{Km} (\operatorname{Sun})$$

Reactor : e.m. interactions of produced e⁻ $\approx 10^{-9}$ Km (Reactor) Accelerator : time scale of weak interactions $\sim c\tau \approx 10^{-3}$ Km (Accelerator)

Matter effects

Only the difference of potential is relevant

 $< e\gamma^0 e > = N_e$

 $\langle e \gamma^{i} e \rangle = N_{e} v_{i}$

Net effect :

 $H_{\rm int} = \frac{G_F}{\sqrt{2}} \,\overline{v}_e \gamma^\mu (1 - \gamma_5) v_e \int d^3 p_e \,f(\mathbf{E}_e, \mathbf{T}) \,\overline{e} \,\gamma^\mu (1 - \gamma_5) e \Longrightarrow \sqrt{2} G_F N_e$

$$l_{\text{matt}} = \frac{2\pi}{\sqrt{2}G_F N_e}$$

Some Neutrino Sources

$$l_{osc} = \frac{4\pi E}{\Delta m^2} \qquad l_{coh} = 4\sqrt{2}\sigma_x \frac{E^2}{\Delta m^2} \qquad l_{matt}^e = \frac{2\pi}{\sqrt{2}G_F N_e}$$

Solar 10-10³ Km 10⁵ - 10⁷ Km 10² Km
Snova 10⁻¹¹ - 10⁻⁷ Km 10⁻⁸ - 10⁻⁴ Km 10⁻¹⁰ Km
React 1,10² Km 10⁶,10⁸ Km 10⁴ Km
Atmos 10-10⁵ Km 10¹⁴ - 10²² Km 10³ - 10⁴ Km
Accel 10² - 10³ Km 10¹⁶ - 10¹⁸ Km 10⁴ Km

Solar $P(v_{e} \rightarrow v_{a}) = P(\Delta m_{sol}^{2}, \theta_{sol})$ *10⁻³* BP00,Free ⁸B 10⁻⁴ *10⁻⁵* 10-6 $(10^{-7} \text{ M}^{-7})^{-9}$ 10-10 Active 10⁻¹¹ Ga+Cl+SK(Sp,Zenith) $10^{-12} + \frac{\text{SNO}(\text{Sp}, \text{D/N})}{10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}}$ 1 10. tan²v

Reactor : ..., Chooz/Palo Verde,...

Reactor : ...,KamLAND

 $P(\bar{v}_e \rightarrow \bar{v}_e) = P(\Delta m_{sun}^2, \theta_{sun})$

Accelerator : K2K

 $P(v_{\mu} \rightarrow v_{\mu}) = P(\Delta M_{ATM}^2, \theta_{ATM})$

 $0.5GeV < E < 1GeV \quad d = 500m$

The Neutrino Matrix :SM + v mass

ALL oscillation neutrino data BUT LSND

3σ ranges:

$$\begin{split} |U_{\alpha i}| = & \begin{pmatrix} |U_{e1}| & |U_{e2}| & |U_{e3}| \\ |U_{\mu 1}| & |U_{\mu 2}| & |U_{\mu 3}| \\ |U_{\tau 1}| & |U_{\tau 2}| & |U_{\tau 3}| \end{pmatrix} = \begin{pmatrix} 0.79 - 0.88 & 0.47 - 0.61 & 0.00 - 0.20 \\ 0.19 - 0.52 & 0.42 - 0.73 & 0.58 - 0.82 \\ 0.20 - 0.53 & 0.44 - 0.74 & 0.56 - 0.81 \end{pmatrix} \end{split}$$

$$7.3 \le \frac{\Delta m^2}{10^{-5} eV^2} \le 9.3 (8.2)$$
$$1.6 \le \frac{\Delta M^2}{10^{-3} eV^2} \le 3.6 (2.2)$$

 $0.28 \le \tan^2 \theta_{12} \le 0.60 \quad (0.39)$ $0.51 \le \tan^2 \theta_{23} \le 2.1 \quad (1.0)$ $\sin^2 \theta_{13} \le 0.041 \quad (0.005)$

The Neutrino Matrix : SM + v mass

ALL oscillation neutrino data BUT LSND

$$\begin{split} |U_{\alpha i}| \sim \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\lambda) & \frac{1}{\sqrt{2}}(1-\lambda) & \varepsilon \\ \frac{1}{\sqrt{2}}(1-\lambda+\Delta+\varepsilon\cos\delta) & \frac{1}{2}(1+\lambda+\Delta-\varepsilon\cos\delta) & \frac{1}{\sqrt{2}}(1-\Delta) \\ \frac{1}{2}(1-\lambda-\Delta-\varepsilon\cos\delta) & \frac{1}{2}(1+\lambda-\Delta+\varepsilon\cos\delta) & \frac{1}{\sqrt{2}}(1+\Delta) \end{pmatrix} \end{split}$$

1 σ ranges: $\lambda = 0.23 \pm 0.04$ $\Delta = 0.00 \pm 0.06$ $\varepsilon \le 0.12$ $-1 \le \cos \delta \le 1$

Neutrinos: Cosmological dark matter to be discovered

If lowest mass is negligible, and normal hierarchy $\Omega_{\nu} = 0.0009 \pm 0.0001$

If highest mass is 1 eV $\Omega_{\nu} \sim 0.03 (1 \text{ eV})$

THE ASTROPHYSICAL JOURNAL, 180: 7-10, 1973 February 15 © 1973. The American Astronomical Society. All rights reserved. Printed in U.S.A.

GRAVITY OF NEUTRINOS OF NONZERO MASS IN ASTROPHYSICS

R. COWSIK* AND J. MCCLELLAND Department of Physics, University of California, Berkeley Received 1972 July 24

ABSTRACT

If neutrinos have a rest mass of a few eV/c^2 , then they would dominate the gravitational dynamics of the large clusters of galaxies and of the Universe. A simple model to understand the virial mass discrepancy in the Coma cluster on this basis is outlined. Subject headings: cosmology — galaxies, clusters of — neutrinos

The possibility of a finite rest mass for the neutrinos has fascinated astrophysicists (Kuchowicz 1969). A recent discussion of such a possibility has been in the context of the solar-neutrino experiments (Bahcall, Cabibbo, and Yahil 1972). Here we wish to point out some interesting consequences of the gravitational interactions of such neutrinos. These considerations become particularly relevant in the framework of big-bang cosmologies which we assume to be valid in our discussion here.

In the early phase of such a Universe when the temperature was ~ 1 MeV, several

I. Neutrinos as Dirac Particles

II. Making Neutrinos

III. Neutrinos as Majorana Particles

Neutrino Sources

Cosmic Neutrino Background

56 cm⁻³ at 1.9K (0.17 meV)

Possible mechanical effect : torque of order G_F if target and neutrino background are polarized (Stodolsky effect) and net neutrino-antineutrino asymmetry

Still far from observability, awaiting for future technology

Neutrinos from Thermal Plasma

Solar (thermonuclear) Neutrinos

Thermonuclear Neutrinos

Geoneutrinos

Decay	Q [MeV]	τ _{1/2} [10 ⁹ yr]	E _{max} [MeV]	ε _H [W/kg]	$\epsilon_{\overline{v}}$ [kg ⁻¹ s ⁻¹]
$^{238}U \rightarrow ^{206}Pb + 8^4He + 6e + 6\overline{\nu}$	51.7	4.47	3.26	0.95•10-4	7.41 · 10 ⁷
$^{232}Th \rightarrow ^{208}Pb + 6^4He + 4e + 4\overline{\nu}$	42.8	14.0	2.25	0.27.10-4	1.63·10 ⁷
$^{40}K \rightarrow ^{40}Ca + e + \overline{\nu}$	1.32	1.28	1.31	0.36.10-8	2.69·10 ⁴

Geoneutrino flux iso-lines

Site	U (10 ⁶ cm ⁻² s ⁻¹⁾	Th (10 ⁶ cm ⁻² s ⁻¹⁾	
Kamioka	3.7	3.2	
GS	4.2	3.7	

Sanduleak -69 202

Supernova 1987A 23 February 1987

Neutrino Signal of Supernova 1987A

Kamiokande (Japan) Water Cherenkov detector <u>Clock</u> uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union) Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

Limits on Supernova Relic Neutrinos

Super-Kamiokande :

 $\Phi_{\overline{v}_e} \le 1.2 \text{ cm}^{-2} \text{s}^{-1}$ (90%CL) >19.3 MeV

Ando et al (2004)

cost

Undiscovered neutrino sources

Neutrinos from the Sun

Neutrinos from the Earth

Sources above 10GeV

90% CL upper limits in 10^{-8} cm⁻²s⁻¹ for E⁻² spectrum from AMANDA II (2000-2002) :

Supernova Beam Dump

GZK Cosmic Rays & Neutrinos

cosmogenic neutrinos are "guaranteed"

• 0.1– few events per year in IceCube

 $p + \gamma_{CMB} \rightarrow \pi + n$

Flavor ratio for far π sources

We start with 1:2:0

Decoherence : wave packets separate v_i

 $|\phi(v_i) \propto |U_{ei}|^2 + 2|U_{\mu i}|^2$

$$\left[\theta_{23} = \frac{\pi}{2}, \theta_{13} = 0\right] \propto (\cos^2 \theta_{12} + \sin^2 \theta_{12}, \sin^2 \theta_{12} + \cos^2 \theta_{12}, 1)$$

We end with 1:1:1 in mass basis (present precision ~ 10%) \Rightarrow We end with 1:1:1 in flavor basis

Man-made Neutrino Sources : Reactors

Man-made Neutrino Sources : Accelerator

- full numerical simulation
- $\Delta = \Delta m_{31}^2 L/4E$
- qualitative understanding \Rightarrow expand in $\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin^2 2\theta_{13}$
- matter effects $\hat{A} = A/\Delta m_{31}^2 = 2VE/\Delta m_{31}^2; \ V = \sqrt{2}G_F n_e$

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \cos^2 \theta_{13} \sin^2 2\theta_{23} \sin^2 \Delta + 2 \alpha \cos^2 \theta_{13} \cos^2 \theta_{12} \sin^2 2\theta_{23} \Delta \cos \Delta$

$$P(\nu_e \to \nu_\mu) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2}$$

 $\pm \sin \delta_{\rm CP} \,\alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$ + $\cos \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$

$$+ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$