

Neutrinos Theory

Carlos Peña Garay IAS, Princeton

March 12, 2005

Benasque

1 kton water + Gd guided by KamLAND

KamLAND 1kton LS, 2000 PMT, 33% cov (1.4 yr, 90%)

Supernova (8.5 kpc) : 300 events Relic Supernova (E>6MeV) ~ 0.4 events/yr

	bck	React	Geov
Bin1	125.2 (24.6)	2.3	6.3
Bin2	24.6 (19.8)	19.5	7.4
Bin3	12.9 (9.8)	35.1	3.9
Bin4	5.9 (3.9)	36.1	2.8

1 kton water + Gd guided by KamLAND

Gd-1kton, 2000 PMT, 33% cov (1.4 yr, 90%)

Supernova (8.5 kpc) : 300 events Relic Supernova (E>5MeV) ~ 0.5 events/yr

	bck	React	Geov
Bin1	12 .2 24.6)	~0	~7
Bin2	24.6 (19.8)	~1	~8.5
Bin3	12.9 (9.8)	~2	~4.5
Bin4	5.9 (3.9)	~2	~3

Neutrino mass : Direct methods

Tritium β Decay: ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \bar{\nu}_{e}$

 $\frac{\mathrm{d}\Gamma}{\mathrm{d}T} = \frac{\left(\cos\vartheta_C G_{\mathrm{F}}\right)^2}{2\pi^3} \left|\mathcal{M}\right|^2 F(E) \, pE\left(Q-T\right) \sqrt{\left(Q-T\right)^2 - m_{\nu_e}^2}$ $Q = M_{3H} - M_{3He} - m_e = 18.58 \,\mathrm{keV}$ Kurie plot: $K(T) = \sqrt{\frac{d\Gamma/dT}{\frac{(\cos\vartheta_C G_F)^2}{2\pi^3}} |\mathcal{M}|^2 F(E) pE} = [(Q-T)\sqrt{(Q-T)^2 - m_{\nu_e}^2}]^{1/2}}$ 0.50.4 $m_{\nu_e} < 2.2 \, {\rm eV}$ (95% C.L.) $m_{\nu_e} = 0$ 0.3[Mainz, Troitsk, hep-ex/0210050] 0.2Future: KATRIN [hep-ex/0109033] 0.1 $m_{\nu_{e}} = 100 \, \text{eV}$ sensitivity: $m_{\nu_e} \gtrsim 0.3 \,\mathrm{eV}$ 0 ĭ8.1 18.218.318.418.518.6T $Q-m_{\nu_{\pi}}$ Q

 $\overline{X}(T)$

if experiment is not sensitive to masses $(m_k \ll Q - T) \implies$ effective mass $m^2 - \sum |U_{\perp}|^2 m^2$

$$m_{\beta}^2 = \sum_k |U_{ek}|^2 m_k^2$$

$$\begin{split} K^2 &= (Q-T)^2 \sum_k |U_{ek}|^2 \sqrt{1 - \frac{m_k^2}{(Q-T)^2}} \simeq (Q-T)^2 \sum_k |U_{ek}|^2 \left[1 - \frac{1}{2} \frac{m_k^2}{(Q-T)^2} \right] \\ &= (Q-T)^2 \left[1 - \frac{1}{2} \frac{m_\beta^2}{(Q-T)^2} \right] \simeq (Q-T) \sqrt{(Q-T)^2 - m_\beta^2} \end{split}$$

I. Neutrinos as Dirac Particles

II. Making Neutrinos

III. Neutrinos as Majorana Particles

Massive Neutrinos : Dirac

Chirality vs Helicity $v_{Li} \propto v_i(p,h) + O(m_i / E) v_i(p,-h)$ $\overline{v}_{Li} \propto \overline{v}_i(p,-h) + O(m_i / E) \overline{v}_i(p,h)$ $m_i \overline{v}_i v_i = \frac{y v}{\sqrt{2}} (\overline{v}_R v_L + \overline{v}_L v_R)$

Example :
$$\mu \rightarrow e \gamma$$

$$\sum U_{\mu k}^{*} U_{ek} = 0 \Rightarrow GIM \text{ mechanism}$$

$$\Gamma = \frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}} \frac{3\alpha}{32 \pi} \left| \sum U_{\mu k}^{*} U_{ek} \frac{m_{j}^{2}}{m_{W}^{2}} \right|^{2} < 10^{-25} \frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}}$$

$$\Gamma_{exp} < 10^{-11} \frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}}$$

Massive Neutrinos : Majorana

$$\nu(\mathbf{p},\mathbf{h}) \longleftrightarrow \overline{\nu}(\mathbf{p},-\mathbf{h})$$

$$\int \mathcal{V}(\mathbf{p},-\mathbf{h}) \longleftrightarrow \overline{\nu}(\mathbf{p},-\mathbf{h})$$

$$\int \mathcal{V}(\mathbf{p},-\mathbf{h}) \longleftrightarrow \mathcal{V}(\mathbf{p},-\mathbf{h})$$

$$\int \mathcal{V}(\mathbf{p},-\mathbf{h}) \longleftrightarrow \overline{\nu}(\mathbf{p},\mathbf{h})$$

$$\mathcal{L}_{\nu} = i \overline{\nu}_{i} \gamma^{\mu} \partial_{\mu} \nu_{i} - \frac{g}{2 \cos \theta_{W}} \overline{\nu}_{i} \gamma^{\mu} Z_{\mu}^{0} \nu_{i}$$

$$- \frac{g}{2 \cos \theta_{W}} \overline{l}_{i} \gamma (U_{ij} W_{\mu}^{-} \nu_{i} + \mathbf{h.c.})$$

$$+ m_{i} \overline{\nu}_{i} \nu + m_{Ri} \overline{\nu}_{Ri}^{c} \nu_{Ri} + \mathbf{h.c.} + \dots$$

Massive Neutrinos : Majorana

$$\nu(\mathbf{p},\mathbf{h}) \longleftrightarrow \nu(\mathbf{p},-\mathbf{h})$$

$$\int \mathcal{O}_{if} \mathcalO_{if} \mathcalO_{i$$

Parameters : Majorana

$$U_{\alpha i} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{+i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{+i\lambda}_{21} & 0 \\ 0 & 0 & e^{+i\lambda}_{31} \end{pmatrix}$$

Majorana phases only relevant in processes involving Lepton Number Violation $(v_{\alpha} - \overline{v}_{\beta})$ Previous discussion on neutrino osc. is valid for Majorana ! Helicity suppressed by smallness of neutrino masses

Majorana vs Dirac : $0\nu\beta\beta$ decay

 $0 \lor \beta \beta: nn \rightarrow ppe^{-}e^{-} \text{ (without neutrinos)}$ $|\langle m^{\vee}_{ee} \rangle| = \frac{m_{e}}{(T_{1/2} F_{N})^{1/2}}$ $F_{N} = G^{0} |M^{0}_{f} - (g_{A}/g_{V})^{2} M^{0}_{GT}|^{2}$

Connection with neutrino parameters : $|\langle m_{ee}^{\nu}\rangle| = |\Sigma m_j U_{ej}|^2 |= |\Sigma m_j |U_{ej}|^2 e^{i\phi_j}|$

Normal Hierarchy Inverted Hierarchy Degenerate

From Osc. Data :

Signal : Energy Resolution required

nuclear matrix elements?

Nuclear Physics methods :

QRPA, SM

Next Generation experiments :

Observed : Neutrinos are Majorana

Not observed : Hard to extract neutrino parameters, and exclude Dirac.

Positive signal?

Present Limits :

Candidate Detector		Present	<m> (eV)</m>	
type	(kg yr)	$T_{1/2}^{0\nu\beta\beta}$ (yr)		
		>9.5*10 ²¹ (76%CL)		
Ge diode	~30	>1.9*10 ²⁵ (90%CL)	<0.39 ^{+0.17} -0.28	
		>9.5*10 ²¹ (90%CL)		
		>5.5*10 ²² (90%CL)		
		>7.0*10 ²² (90%CL)		
TeO2 cryo	~3	>1.1*10 ²³ (90%CL)		
TeO, cryo	~3	>2.1*10 ²³ (90%CL)	<1.1 - 2.6	
Xe scint	~10	>1.2*10 ²⁴ (90%CL)	<2.9	
		>1.2*10 ²¹ (90%CL)		
		>1.3*10 ²¹ (90%CL)		
	Detector type Ge diode	Detector type(kg yr)Ge diode~30Ta02 arya~3Ta02 arya~3Xe scint~10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Projected/proposed

Experiment	Nucleus	Detector	Т⁰⊻(у)	<mv>eV</mv>
CUORE	¹³⁰ Te	.77 t of TeO ₂ bolometers (nat)	7 × 10 ²⁶	.014091
EXO	¹³⁶ Xe	10 t Xe TPC + Ba tagging	1×10^{28}	.013037
Gertha	⁷⁶ Ge	1 t Ge diodes in LN	1 x 10 ²⁸	.013050
Majorana	⁷⁶ Ge	1 + Ge diodes	4 x 10 ²⁷	.021070
MOON	¹⁰⁰ Mo	34 t nat.Mo sheets/plastic sc.	1 × 10 ²⁷	.014057
DCBA	¹⁵⁰ Nd	20 kg Nd-tracking	2 x 10 ²⁵	.035055
CAMEO	¹¹⁶ Cd	1 t CdWO ₄ in liquid scintillator	> 10 ²⁶	.05324
COBRA	¹¹⁶ Cd , ¹³⁰ Te	10 kg of CdTe semiconductors	1×10^{24}	.5-2.
Candles	⁴⁸ Ca	Tons of CaF ₂ in liq. scint.	1×10^{26}	.1526
GSO	¹¹⁶ Cd	2 t Gd ₂ SiO ₅ :Ce scint in liq scint	2 × 10 ²⁶	.038172
Xmass	¹³⁶ Xe	1 t of liquid Xe	3 x 10 ²⁶	.086252

Theorem $0\nu\beta\beta \leftrightarrow \rightarrow$ Majorana

in gauge theories with SSB

Seesaw mechanism

$$\mathcal{L}_{v} \prec \mathbf{m}_{i} \overline{v}_{i} v_{i} + m_{Ri} \overline{v}_{Ri}^{c} v_{Ri} + \text{h.c.} + \dots$$

Integrating out the heavy field
$$\frac{\phi}{v_{L}} \times \frac{M}{v_{R}} \times \frac{\phi}{v_{L}}$$

$$\mathcal{L}_{eff} \prec \frac{\mathbf{m}_{i}^{2}}{4\mathbf{m}_{Ri}} \overline{v}_{Li}^{c} v_{Li}$$

Equivalenly, diagonalize the mass matrix in v_{L} - v_{R} basis
$$\begin{bmatrix} 0 & m \\ m & m_{R} \end{bmatrix}$$

Leptogenesis

Generate L asymmetry from direct CP violation in right handed decay

Net effect (2 families needed):

$$\varepsilon = \frac{\Gamma(N_1 \to v_i H) - \Gamma(N_1 \to \overline{v_i} H)}{\Gamma(N_1 \to v_i H) + \Gamma(N_1 \to \overline{v_i} H)} \sim \frac{1}{8\pi} \frac{\operatorname{Im}(h_{13} h_{13} h_{33}^* h_{33}^*)}{|h_{13}|^2} \frac{M_1}{M_3}$$

Convert L into B via anomaly -> Matter- Antimatter asymmetry

Summary

Neutrinos oscillate, refract, decohere,... -> test sources and explore mixing matrix

The field is open with a well defined program:

- Complete the mixing matrix : θ_{13} and δ_{CP}
- $0\nu\beta\beta$: Dirac vs Majorana
- Test sources (Solar luminosity with neutrinos,...)

Expand to discovery regions :

-Low energies : solar, (s. DM searches), terrestrial, SN, ...

-High energies : hadronic acceleration sources, CR connection Be ready for surprises