Benasque, IMFP 2005

March 10th, 2005

HERA PHYSICS

Juan Terrón (Universidad Autónoma de Madrid, Spain)

• Outline

- \rightarrow Jets and α_s
- \rightarrow HERA II

HERA PHYSICS

J Terrón (Madrid)

ZEUS detector \Rightarrow

← H1 detector

Structure Functions

Kinematics of Neutral Current Deep Inelastic Scattering

the (fully) inclusive cross section for

$$ep \rightarrow e + X$$

can be described by two independent kinematic variables, e.g.

$$Q^2 = -(k-k')^2$$

$$x_{Bj} = Q^2/(2P\cdot q)$$

HERA PHYSICS

Neutral Current Deep Inelastic Scattering

• Neutral Current DIS event candidate $Q^2 \sim 24000~{ m GeV}^2$ and $x_{Bj} \sim 0.5$

• Coverage of kinematic plane (Q^2, x_{Bj})

J Terrón (Madrid)

Neutral Current Deep Inelastic Scattering

• Inclusive process $e^{\pm}p \rightarrow e^{\pm} + X$ $\frac{d\sigma(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \cdot \left(\begin{array}{c} Y_+ \cdot F_2(x,Q^2) - y^2 \cdot F_L(x,Q^2) \mp Y_- \cdot xF_3(x,Q^2) \\ \hline Dominant & \underline{\text{High } y} \\ \hline Where \ Y_{\pm} = 1 \pm (1-y)^2 \text{ and } y = Q^2/(sx) \text{ (inelasticity parameter)} \end{array} \right)$

- Structure functions of the proton (F_2 , F_L , F_3) and QCD
 - $ightarrow F_2 \sim x \sum_i e_i^2 \cdot (q_i(x,Q^2) + ar q_i(x,Q^2))$ for $Q^2 \ll M_Z^2$
 - \rightarrow the longitudinal structure function $F_L = 0$ in the quark-parton model \rightarrow parity-violating term F_3 is small for $Q^2 \ll M_Z^2$

J Terrón (Madrid)

Benasque, IMFP 2005

March 10th, 2005

Determination of the Parton Distribution Functions in the Proton

- In order to determine the proton PDFs additional experimental information is needed on
 - \rightarrow quark densities at high x
 - \rightarrow flavour composition of the sea
- Additional data sets
 - \rightarrow F_2 data on μp scattering from BCDMS, NMC and E665 \Rightarrow mid/high-x
 - ightarrow Deuterium-target data from NMC and E665 \Rightarrow $ar{u}, ar{d}$
 - \rightarrow NMC data on the ratio $F_2^D/F_2^p \Rightarrow$ high-x d/u
 - $\rightarrow xF_3$ data from CCFR (ν -Fe interactions) \Rightarrow high-x

• Global analysis using DGLAP evolution equations at next-to-leading order (NLO) in α_s $\frac{\partial q_i(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{dz}{z} \left(\sum_j P_{q_iq_j} \cdot q_j(x/z,\mu^2) + P_{q_ig} \cdot g(x/z,\mu^2) \right)$ $\frac{\partial g(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{dz}{z} \left(\sum_j P_{gq_j} \cdot q_j(x/z,\mu^2) + P_{gg} \cdot g(x/z,\mu^2) \right)$

The DGLAP equations yield the proton PDFs at any value of Q^2 provided they are input as functions of x at some input scale Q_0^2

 \rightarrow number sum rules and the momentum sum rule are imposed

Determination of the Parton Distribution Functions in the Proton

J Terrón (Madrid)

Benasque, IMFP 2005

March 10th, 2005

Determination of the Sea Distribution

• The total sea distribution $xS(x, Q^2)$ as a function of x for different Q^2 values \Rightarrow

 \bullet Its uncertainty is below $\sim 5\%$ for $Q^2>2.5~{\rm GeV}^{2^{0.25}}_{-0.25}$ and $10^{-4}< x<0.1$

12

Determination of the Gluon Distribution

- The gluon distribution $xg(x, Q^2)$ as a function of x for different Q^2 values \Rightarrow
- \bullet Its uncertainty is $\sim 10\%$ for $Q^2 \sim 20~{\rm GeV^2}$ and $10^{-4} < x < 0.1$
 - \rightarrow the uncertainty decreases as Q^2 increases

Determination of α_s

Inclusion of low-x data allows a simultaneous (and precise) determination of PDFs and α_s: α_s(M_Z) = 0.1166 ± 0.0008(uncorr) ±0.0032(corr) ± 0.0036(norm) ±0.0018(model) ⇒ 0.1166 ± 0.0052
(+theor. unc. due to terms beyond NLO ~ ±0.004)
Consistent with world average (Bethke, 2004): → α_s(M_Z) = 0.1182 ± 0.0027

Universality (and usefulness) of Proton PDFs

$$\sigma_{pp \to H(W,Z,...)+X} = \sum_{a,b} \int_0^1 dx_1 f_{a/p}(x_1,\mu_F^2) \int_0^1 dx_2 f_{b/p}(x_2,\mu_F^2) \hat{\sigma}_{ab \to H(W,Z,...)}$$

J Terrón (Madrid)

Benasque, IMFP 2005

Electroweak Measurements

Charged Current Deep Inelastic Scattering

• Charged Current DIS event candidate $Q^2 \sim 1200~{ m GeV}^2$ and $x_{Bj} \sim 0.06$

J Terrón (Madrid)

Charged Current Deep Inelastic Scattering

Neutral Current Deep Inelastic Scattering

Neutral vs Charged Current Deep Inelastic Scattering

Charged Current Deep Inelastic e^+p **Scattering**

• Measurement of the reduced cross section in CC DIS:

$$\begin{split} & ilde{\sigma}(e^+p) = (G_F^2\eta_W^2/2\pi x)^{-1}d\sigma_{\mathrm{Born}}/dxdQ^2 \ & o \ \mathrm{Sensitivity \ to \ flavour \ composition} & \circ \ & \tilde{\sigma}(e^+p) = x(\bar{u} + \bar{c} + (1-y)^2(d+s)) & \uparrow \ & o \ \mathrm{Sensitivity \ to \ valence \ quarks} \ & \tilde{\sigma}(e^+p) \to x(1-y)^2d_V \ (\mathrm{high-}x) & \end{split}$$

- Good description by SM predictions based on CTEQ6 parametrizations of PDFs _____
- → valence quarks and flavour composition determined from fixed-target data

HERA e⁺p Charged Current

Charged Current Deep Inelastic e^-p Scattering

- Measurement of the reduced cross section in CC DIS:
- $$\begin{split} & ilde{\sigma}(e^-p) = (G_F^2\eta_W^2/2\pi x)^{-1}d\sigma_{\mathrm{Born}}/dxdQ^2 \ & o \ \mathrm{Sensitivity \ to \ flavour \ composition} \ & \circ \ & \tilde{\sigma}(e^-p) = x(u+c+(1-y)^2(ar{d}+ar{s})) \ & o \ \mathrm{Sensitivity \ to \ valence \ quarks} \ & ilde{\sigma}(e^-p) o xu_V \ (\mathrm{high}-x) \end{split}$$
- Good description by SM predictions based on CTEQ6 parametrizations of PDFs
- → valence quarks and flavour composition determined from fixed-target data

HERA e⁻p Charged Current

Charged Current Deep Inelastic e^+p and e^-p Scattering

- Measurements of the reduced cross section in CC DIS:
- $$\begin{split} \tilde{\sigma}(e^{\pm}p) &= (G_F^2 \eta_W^2 / 2\pi x)^{-1} d\sigma_{\text{Born}} / dx dQ^2 \\ \rightarrow \text{Sensitivity to flavour composition} & \circ \circ \\ \tilde{\sigma}(e^+p) &= x(\bar{u} + \bar{c} + (1-y)^2(d+s)) \\ \tilde{\sigma}(e^-p) &= x(u + c + (1-y)^2(\bar{d} + \bar{s})) \\ \rightarrow \text{Sensitivity to valence quarks} \\ \tilde{\sigma}(e^+p) &\to x(1-y)^2 d_V \text{ (high-}x) \\ \tilde{\sigma}(e^-p) &\to x u_V \text{ (high-}x) \end{split}$$
- \Rightarrow In combination with the reduced NC cross section at large Q^2 and high x

HERA Charged Current

Neutral Current Deep Inelastic e^+p and e^-p Scattering at high x

• Measurements of the reduced cross section in CC DIS:

$$\begin{split} \tilde{\sigma}(e^{\pm}p) &= (G_F^2 \eta_W^2 / 2\pi x)^{-1} d\sigma_{\text{Born}} / dx dQ_{10}^2 \\ \rightarrow & \text{Sensitivity to flavour composition} \end{split} ^{10^{5}} \\ \tilde{\sigma}(e^{+}p) &= x(\bar{u} + \bar{c} + (1 - y)^2 (d + s))) \overset{10^{4}}{\tilde{\sigma}(e^{-}p)} = x(u + c + (1 - y)^2 (\bar{d} + \bar{s}))) \end{aligned} ^{10^{3}} \\ \rightarrow & \text{Sensitivity to valence quarks} \\ \tilde{\sigma}(e^{+}p) &\to x(1 - y)^2 d_V (\text{high-}x) \end{aligned} ^{10^{2}} \\ \tilde{\sigma}(e^{-}p) &\to x u_V (\text{high-}x) \end{aligned}$$

- $\Rightarrow \text{ In combination with the reduced NC} \\ \text{cross section at large } Q^2 \text{ and high } x \qquad 10 \\ \text{provide sufficient sensitivity to determine} \\ \text{the proton PDFs within a single experiment} \end{cases}$
 - \rightarrow free from nuclear corrections
 - \rightarrow free from higher-twists effects

HERA Neutral Current at high x

Structure Functions (Continued)

Determination of the Proton PDFs with ZEUS data alone

Fit of ZEUS-only data: NC DIS e[±]p and CC DIS e[±]p in the region 2.5 < Q² < 30000 GeV², 6.3 · 10⁻⁵ < x < 0.65 and W² > 20 GeV² using DGLAP evolution equations at NLO: → xu_V, xd_V, xS, xg (no HERA information on flavour composition of the sea: flavour-averaged sea)
⇒ Good description of Structure Function data (577 data points)

Determination of the Proton PDFs with HERA data alone

 \Rightarrow HERA determination of proton PDFs in agreement with global fits (CTEQ, MRST) HERA-I data: $\mathcal{L}(e^+p) \approx 110 \text{ pb}^{-1}$ and $\mathcal{L}(e^-p) \approx 15 \text{ pb}^{-1}$

 \rightarrow room for improvement from HERA-II data

J Terrón (Madrid)

Benasque, IMFP 2005

Jet Production in Neutral Current Deep Inelastic Scattering

• Perturbative QCD calculations of jet cross sections:

$$\sigma_{jet} = \sum_{a=q,ar{q},g}\int dx\, f_a(x,\mu_F^2)\, \hat{\sigma}_a(x,lpha_s(\mu_R),\mu_R^2,\mu_F^2)$$

- $-f_a$: parton *a* density in the proton, determined from experiment; long-distance structure of the target
- $-\hat{\sigma}_a$: subprocess cross section, calculable in pQCD; short-distance structure of the interaction

Jet Production in Neutral Current Deep Inelastic Scattering

- In the region where the wealth of data from fixed-target and collider experiments has allowed an accurate determination of the proton PDFs, measurements of jet production in NC DIS provide
 - \rightarrow a sensitive test of the pQCD predictions of the short-distance structure
 - \rightarrow a determination of the strong coupling constant α_s
- To perform a stringent test of the pQCD predictions and a precise determination of α_s :
 - * Observables for which the predictions are directly proportional to $lpha_s$
 - \rightarrow Jet cross sections in the Breit frame
 - * Small experimental uncertainties \rightarrow Jets with relatively high transverse energy
 - * Small theoretical uncertainties \rightarrow NLO QCD calculations
 - \rightarrow Jet algorithm: longitudinally invariant k_T cluster algorithm (Catani et al)
 - (small parton-to-hadron effects, infrared safe, suppression of beam-remnant jet)
 - \rightarrow Jet selection criteria
- Exploration of the parton evolution at low $x \Rightarrow$ footprints of BFKL effects?
- Exploration of the low Q^2 (transition) region \Rightarrow resolved virtual photons?

HERA PHYSICS

High- E_T Jet Production in the Breit Frame

- In the Breit frame the virtual boson collides head-on with the proton
- High- E_T jet production in the Breit frame
 - \rightarrow suppression of the Born contribution (struck quark has zero E_T)
 - \rightarrow suppression of the beam-remnant jet (zero E_T)
 - \rightarrow lowest-order non-trivial contributions from $\gamma^*g \rightarrow q\bar{q}$ and $\gamma^*q \rightarrow qg$
 - \Rightarrow directly sensitive to hard QCD processes (α_s)

NLO QCD Calculations of Jet Cross Sections in DIS

- Several NLO QCD programs are available for performing jet cross section calculations → DISENT (Catani and Seymour), MEPJET (Mirkes and Zeppenfeld), DISASTER++ (Graudenz), NLOJET (Nagy and Trocsanyi)
- NLO corrections → virtual corrections with internal particle loops
 → real corrections with a third parton in the final state
- Different methods to calculate real corrections:
- \rightarrow phase space slicing method (M), subtraction method (D, D++, NJ)
- Since there are two hard scales in jet production, the renormalisation and factorisation scales can be chosen as one of the two, μ_R , $\mu_F = Q$ or E_T^{jet}
- The calculations are for jets of partons and the measurements are done at the hadron level → need to correct the calculations for hadronisation effects
- Theoretical uncertainties:
 - \rightarrow terms beyond NLO, which are usually estimated by varying μ_R by factor 2
 - \rightarrow uncertainties on $\alpha_s(M_Z)$ and the proton PDFs
 - \rightarrow uncertainty coming from the hadronisation corrections

Jet Finding and Selection Criteria for Dijet Events

 \Rightarrow NLO calculations for dijet cross sections can be (infrared) sensitive to the selection criteria

q

10

 $E_{\tau 1}$ (GeV)

0

10

15

Dijet Cross Sections in NC DIS ($5 < Q^2 < 15000 \text{ GeV}^2$)

• Measurement of differential dijet cross sections over a wide range in $Q^2 \rightarrow 5 < Q^2 < 15000 \text{ GeV}^2$ and 0.2 < y < 0.6 for dijet production with $E_T^{jet,1(2)}(\text{Breit}) > 5 \text{ GeV}$ $E_T^{jet,1}(\text{Breit}) + E_T^{jet,2}(\text{Breit}) > 17 \text{ GeV}$ $-1 < \eta^{jet,1(2)}(\text{Lab}) < 2.5$

- Detailed investigation of the jet algorithms:
- ightarrow Smallest parton-to-hadron effects: inclusive k_T
- Comparison with NLO QCD calculations:

$$ightarrow \mu_R = ar{E}_T, \mu_F = \sqrt{200}~{
m GeV}$$

- \rightarrow CTEQ5M1 parametrisations of proton PDFs
- \rightarrow parton-to-hadron corrections applied
- NLO QCD gives a good description of the data over

a wide range in Q^2 and E_T ; the Q^2 dependence is

observed to be reduced at high- E_T and described by NLO ¹⁰

Dijet Cross Sections in NC DIS

• Measurement of double $d^2 \sigma_{dijet}$ / dM_{jj} dQ^2 / (pb/GeV³) differential cross sections $d\sigma/dM_{JJ}dQ^2, d\sigma/dar{E}_T dQ^2$ over $5 < Q^2 < 5000 \, \text{GeV}^2$ • It is observed that the spectra get harder as Q^2 increases • NLO QCD describes well the data over $15 < M_{JJ} < 95$ GeV and 8.5 $< \bar{E}_T < 60$ GeV except at low Q^2 , where the shape is ok but not the normalisation • Overview: at high Q^2 (> 70 GeV²) **NLO describes the data well;** as Q^2 decreases the theoretical uncertainties become large and NLO fails for $Q^2 < 10 \text{ GeV}^2$

J Terrón (Madrid)

Benasque, IMFP 2005

Dijet Cross Sections at $Q^2 > 470~{ m GeV^2}$ and extraction of $lpha_s$

• Dijet cross section $d\sigma_{2+1}/dQ^2$ for $470 < Q^2 < 20000 \text{ GeV}^2$ $E_T^{jet,1}(\text{Breit}) > 8 \text{ GeV}$ $E_T^{jet,2}(\text{Breit}) > 5 \text{ GeV}$ $-1 < \eta^{jet,1(2)}(\text{Lab}) < 2$

$$ightarrow$$
 Ratio $R_{2+1} \equiv rac{d\sigma_{2+1}/dQ^2}{d\sigma_{tot}/dQ^2}$

- Small experimental uncertainties.
- Comparison with NLO QCD calculations
- Small theoretical uncertainties:
 - \rightarrow uncertainties on the proton PDFs
 - \rightarrow hadronisation corrections
 - → higher-order terms (> NLO)

Benasque, IMFP 2005

Dijet Cross Sections at $Q^2 > 470 \text{ GeV}^2$

• Measurement of dijet differential cross section as a function of

 $egin{aligned} &z_{p,1} = rac{(E-p_z)_{ ext{jet},1}}{\sum_{k=1,2}(E-p_z)_{ ext{jet},k}} \simeq rac{1}{2} \cdot (1-\cos heta^*) \ & heta^* ext{ is the scattering angle in the } \gamma^* ext{-parton CMS} \ &x_{Bj} = ext{Bjorken's } x ext{ variable} \ &\xi = ext{fraction of proton momentum carried by} \ & ext{incoming parton}, \xi = x_{Bj} \cdot (1+M_{jj}^2/Q^2) \ &M_{jj} = ext{dijet invariant mass} \end{aligned}$

• NLO QCD calculations provide a good description of the data

 \rightarrow validity of the description of the dynamics of dijet production by pQCD at $\mathcal{O}(\alpha_s^2)$

Dijet Cross Sections at $Q^2>470~{ m GeV^2}$ and extraction of $lpha_s(M_Z)$

Dijet Cross Sections at $Q^2 > 470~{ m GeV^2}$ and extraction of $lpha_s$

Inclusive Jet Cross Sections in NC DIS at $Q^2 > 125 \text{ GeV}^2$

- Measurement of inclusive jet cross sections in the kinematic region defined by $Q^2 > 125 \text{ GeV}^2$ and
- $-0.7 < \cos \gamma < 0.5$ for jets with
 - $E^B_{T,jet} > 8~{
 m GeV}~{
 m and}~-2 < \eta^B_{jet} < 1.8$
 - \rightarrow no cut is applied in the laboratory frame
- Advantages:
- \rightarrow infrared insensitivity (no dijet cuts!)
- \rightarrow suited to test resummed calculations
- \rightarrow smaller theoretical uncertainties than for dijet
- Small experimental uncertainties:
 - → jet energy scale (1% for $E_{T,jet} > 10$ GeV) $\Rightarrow \sim \pm 5\%$ on the cross sections
- Small parton-to-hadron corrections (C_{had}) : < 10%
- NLO QCD calculations $(\mathcal{O}(\alpha_s^2))$ using $\mu_R = E_{T,jet}^B$, $\mu_F = Q$ and the MRST99 parametrisations of the proton PDFs describe the measurements well

Inclusive Jet Cross Sections in NC DIS at $Q^2 > 125 \text{ GeV}^2$

- Measurement of the inclusive jet cross section dσ/dE^B_{T,jet} in different regions of Q²
 Small theoretical uncertainties:
 - → higher-order terms (> NLO); varying μ_R between $\frac{1}{2} \cdot E^B_{T,iet}$ and $2 \cdot E^B_{T,iet} \Rightarrow \pm 5\%$
 - \rightarrow uncertainty on $\alpha_s(M_Z)$ (± 0.003); $\Rightarrow \pm 5\%$
 - → hadronisation corrections; variance of C_{had} values (ARIADNE, LEPTO, HERWIG) $\Rightarrow < 1\%$
 - \rightarrow uncertainties on the proton PDFs
 - experimental uncertainties $\Rightarrow \pm 3\%$
 - theoretical assumptions $\Rightarrow \pm 3\%$

NLO QCD calculations provide a good description of the data

Inclusive Jet Cross Sections and extraction of α_s

• The inclusive jet cross section $d\sigma/dQ^2$ at $Q^2 > 500~{
m GeV^2}$ has been used to extract $\alpha_s(M_Z)$

 $lpha_s(M_Z) = 0.1212 \pm 0.0017 \; {
m (stat.)} \ +0.0023 \ -0.0031} \; {
m (exp.)}^{+0.0028}_{-0.0027} \; {
m (th.)}$

- Experimental uncertainties:
- \rightarrow jet energy scale (1% for $E_{T,jet} > 10$ GeV)
- Theoretical uncertainties:
- ightarrow terms beyond NLO $\Delta lpha_s(M_Z)=3\%$
- ightarrow uncertainties proton PDFs $\Delta lpha_s(M_Z) = 1\%$
- ightarrow hadronisation corrections $\Delta lpha_s(M_Z)=0.2\%$
- \bullet Consistent with other determinations of α_s and PDG
- Very precise determination of $\alpha_s(M_Z)$!

Further improvement depends upon further Experimental and Theoretical Work

J Terrón (Madrid)

Benasque, IMFP 2005

March 10th, 2005

• Production of jets in γp collisions has been measured via ep scattering at $Q^2 \approx 0$

• At lowest order QCD, two hard scattering processes contribute to jet production \Rightarrow

• pQCD calculations of jet cross sections

Direct process

$$\sigma_{jet} = \sum_{a,b} \int_0^1 dy \ f_{\gamma/e}(y) \int_0^1 dx_\gamma \ f_{a/\gamma}(x_\gamma,\mu_{F\gamma}^2) \int_0^1 dx_p \ f_{b/p}(x_p,\mu_{Fp}^2) \ \hat{\sigma}_{ab
ightarrow jj}$$

longitudinal momentum fraction of $\gamma/e^+(y)$, parton $a/\gamma(x_{\gamma})$, parton $b/\text{proton}(x_p)$ $\rightarrow f_{\gamma/e}(y) = \text{flux of photons in the positron (WW approximation)}$ $\rightarrow f_{a/\gamma}(x_{\gamma}, \mu_{F\gamma}^2) = \text{parton densities in the photon (for direct processes <math>\delta(1 - x_{\gamma})$)} $\rightarrow f_{b/p}(x_p, \mu_{Fp}^2) = \text{parton densities in the proton}$ $\rightarrow \sigma_{ab \rightarrow jj}$ subprocess cross section; short-distance structure of the interaction

J Terrón (Madrid)

Benasque, IMFP 2005

Photoproduction of Jets

- Measurements of jet photoproduction provide
 - parametrisations of the proton and photon PDFs
- \rightarrow Dynamics of resolved and direct processes
- \rightarrow Photon structure: information on quark densities from F_2^{γ} in e^+e^- ; gluon density poorly constrained. Jet cross sections in photoproduction are sensitive to both the quark and gluon densities in the photon at larger scales $\mu_{F\gamma}^2 \sim E_{T,jet}^2 (200 - 10^4 \text{ GeV}^2)$ \rightarrow **Proton structure: well constrained by DIS except**
- for the gluon density at high x. Jet cross sections in γp are sensitive to parton densities at x_p up to ~ 0.6
- Observable to separate the contributions: the fraction of the photon's energy participating in the production of the dijet system

$$x_{\gamma}^{OBS} = rac{1}{2E_{\gamma}} \sum_{\mathrm{i}=1}^{2} E_{T}^{jet_{i}} e^{-\eta^{jet_{i}}}$$

Dijet Photoproduction: the dynamics of resolved and direct processes

• The dynamics of dijet production has been investigated by studying the variable:

$$\cos\theta^* \equiv tanh(\frac{1}{2}(\eta^{jet,1} - \eta^{jet,2}))$$

- \rightarrow for two-to-two parton scattering θ^* coincides with the scattering angle in the dijet CMS
- QCD predicts different dijet angular distributions for resolved and direct:
- $\rightarrow \text{Resolved (gluon-exchange dominated)}$ $d\sigma/d|\cos\theta^*| \sim \frac{1}{(1-|\cos\theta^*|)^2}$ $\rightarrow \text{Direct (quark-exchange only)}$ $d\sigma/d|\cos\theta^*| \sim \frac{1}{(1-|\cos\theta^*|)^1}$

• The dijet angular distribution $d\sigma/d|\cos\theta^*|$ for $x_{\gamma}^{OBS} < 0.75$ ("resolved") should be steeper than that of $x_{\gamma}^{OBS} > 0.75$ ("direct") as $|\cos\theta^*| \to 1$

Dijet Photoproduction: the dynamics of resolved and direct processes

 $x_{\gamma}^{obs} > 0.75$

0.2

• ZEUS 96-97

0.4

NLO (GRV) ⊗ HAD NLO (AFG) ⊗ HAD

Jet energy scale uncertainty

0.6

Icosθ*I

0.8

High- M_{JJ} Dijet Photoproduction

- Measurement of the dijet differential cross section $d\sigma/dM_{JJ}$ in the range $47 < M_{JJ} < 160$ GeV for dijet events with $E_T^{jet} > 14$ GeV, $-1 < \eta^{jet} < 2.5$ and $|\cos \theta^*| < 0.8$
- Small experimental uncertainties:

ightarrow jet energy scale known to $1\% \Rightarrow 5\%$ on $d\sigma/dM_{JJ}$

- Small theoretical uncertainties:
- \rightarrow higher-order terms (varying $\mu_R)$ below 15%
- $ightarrow \gamma$ PDFs (GRV-HO,AFG-HO) below 10%
 - ightarrow resolved processes suppressed at high M_{JJ}
- ightarrow small hadronisation corrections, below 5%
- NLO QCD calculations describe the shape and normalisation of the measurements well
 - \rightarrow Validity of the pQCD description of the dynamics of parton-parton and γ -parton interactions in photoproduction

Dijet Photoproduction: photon and proton structure

- Measurement of the dijet cross sections $d\sigma/dx_{\gamma}$ and $d\sigma/dx_{p}$ for dijet events with $E_{T,max} > 25 \text{ GeV}, E_{T,second} > 15 \text{ GeV} \text{ and } -0.5 < \eta^{jet} < 2.5 \text{ (both jets)}$ in the kinematic region $Q^{2} < 1 \text{ GeV}^{2}$ and $95 < W_{\gamma p} < 285 \text{ GeV}$
- x_p variable: $x_p = rac{1}{2E_p} \sum_{i=1}^2 E_T^{jet_i} e^{\eta^{jet_i}}$
- NLO calculations using CTEQ5M (proton) and GRV-HO (photon) describe the data
- Theoretical uncertainties:
- ightarrow terms beyond NLO \Rightarrow 10-20%
- \rightarrow uncertainties of proton PDFs
 - <5% (up to 15%) for $x_p<0.1\,(>0.1)$
- Even up to the highest x_p , where 40% of $d\sigma/dx_p$ arises from gluon_p-induced processes, the data is described by NLO
- Consistent with QCD-evolved photon PDFs determined from measurements at lower scales

Inclusive Jet Photoproduction

 Measurement of the differential cross section $d\sigma/dE_{T}^{\rm jet}$ for inclusive jet photoproduction with $E_{_{T}}^{
m jet} > 17~{
m GeV}$ and $-1 < \eta^{
m jet} < 2.5$ in the kinematic region $Q^2 < 1 \text{ GeV}^2$ and $142 < W_{\gamma p} < 293 \text{ GeV}$ • Small experimental uncertainties \rightarrow jet-energy scale known to $\pm 1\%$ $\Rightarrow \sim \pm 5-10\%$ on the cross sections • Small theoretical uncertainties \rightarrow terms beyond NLO \Rightarrow below 10% \rightarrow proton PDFs \Rightarrow 1-5% \rightarrow photon PDFs \Rightarrow below 5% • Precise test of NLO QCD calculations: good description of the data in shape and normalization

 $\alpha_s(M_Z) = 0.1224 \pm 0.0001 \text{ (stat.)}^{+0.0022}_{-0.0019} \text{ (exp.)}^{+0.0054}_{-0.0042} \text{ (th.)}$

• Determination of $\alpha_s(E_T^{\text{jet}})$: the measured energy-scale dependence of α_s is in good agreement with the running predicted by QCD over a large range in E_T^{jet}

• Fit with two-loop formulae $\alpha_s^{-1}(E_T^{\rm jet}) = \beta_0/2\pi \cdot \ln E_T^{\rm jet} \cdot (1-\ldots)$

 $eta_0 = 8.53 \pm 0.22 \; ({
m stat.})^{+0.56}_{-0.53} \; ({
m exp.})^{+1.34}_{-0.82} \; ({
m th.}) \quad ({
m QCD:} \; eta_0 = 7.67 \; {
m for} \; n_f = 5)$

Summary of α_s determinations

• Wealth of determinations of α_s at HERA th. uncert. Jet shapes in NC DIS from a variety of observables: **ZEUS (Nucl Phys B 700 (2004) 3)** exp. uncert. **Multi-iets in NC DIS** \rightarrow NLO QCD analyses of structure functions ZEUS (DESY 05-019 - hep-ex/0502007) Inclusive jet cross sections in γp \rightarrow Inclusive jet production in NC DIS ZEUS (Phys Lett B 560 (2003) 7) Subjet multiplicity in CC DIS \rightarrow Dijet production in NC DIS **ZEŮS (Eur Phys Jour C 31 (2003) 149)** Subjet multiplicity in NC DIS \rightarrow Tri-jet/Dijet rate in NC DIS **Het** ZEŮS (Phys Lett B 558 (2003) 41) NLO OCD fit \rightarrow Jet substructure in NC DIS H1 (Eur Phys J C 21 (2001) 33) NLO OCD fit \rightarrow Jet substructure in CC DIS ZEUS prel. (contributed paper to ICHEP04) NLO OCD fit \rightarrow Inclusive jet photoproduction ZEUS (Phys Rev D 67 (2003) 012007) **Inclusive jet cross sections in NC DIS** Theoretical uncertainties are dominant H1 (Eur Phys J C 19 (2001) 289) **Inclusive jet cross sections in NC DIS** \rightarrow Biggest contrib. from terms beyond NLO ZEUS (Phys Lett B 547 (2002) 164) **Dijet cross sections in NC DIS** ⊢₽●╉╢ • Average of HERA determinations **ZĚUS (Phys Lett B 507 (2001) 70)** World average (S. Bethke, hep-ex/0407021) $\alpha_s(M_Z) = 0.1186 \pm 0.0011(\text{exp.}) \pm 0.0050(\text{th.})$ • Consistent with world average (Bethke, 2004): 0.1 0.12 0.14 $\rightarrow \alpha_s(M_Z) = 0.1182 \pm 0.0027$ (only NNLO results) $\alpha_{c}(M_{7})$

52

The running of α_s from HERA data alone

ightarrow Consistent with the running predicted by QCD over a large range in $E_T^{
m jet}$

J Terrón (Madrid)

Benasque, IMFP 2005

First results from HERA II data

• Longitudinal Polarisation: $P = \frac{N_R - N_L}{N_R + N_L}$

HERA PHYSICS

Charged Current Deep Inelastic $e_{L,R}^+ p$ scattering

HERA II

\Rightarrow Results in agreement with the prediction of the Standard Model

HERA PHYSICS

