Experimental Challenges for Physics at the Terascale

Eduardo Cortina Gil CIEMAT

Outline

- 1. Introduction: Standard Model
- 2. Standard Model shortcomings Theoretical Experimental
- 3. Physics at the Terascale
- 4. Accelerators for physics at the Terascale: The Large Hadron Collider (LHC) The International Linear Collider (ILC) LHC and ILC interplay: Search of Standard Model Higgs Supersymmetry Search
- 5. Detectors for ILC Detector Concepts Tracking Calorimetry
- 6. Conclusions

INTRODUCTION: STANDARD MODEL

- Unified framework to describe elementary particle interctions:
 - Yang-Mills theory: based on Electroweak+Strong symmetry groups
 - SU(2)_L x U(1)_Y + SU(3)_c
 - Gauge fields mediated by spin 1 bosons
 - Electroweak: Isovector + Isoscalar
 - Strong: 8 gluons
 - Matter fields: 3 generations (spin ¹/₂)
 - Left handed fermions are isodoublets in SU(2),
 - Right handed fermions are isosinglets in SU(2),
 - Quarks are triplets under SU(3)

Force	Symmetry Group	Fields	Coupling
Electromagnetic	U(1) _Y	W^{123}_{μ}	9 ₁
Weak	SU(2) _L	$B_{_{\!$	9 ₂
Strong	SU(3) _c	G_{μ}^{18}	9 _s

$$Q = I_3 + \frac{1}{2}Y$$

$$L = L_{gauge} + L_{leptons} + L_{quarks}$$

$$L_{gauge} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} f_{\mu\nu} f^{\mu\nu} \qquad L_{leptons} = \overline{R}_{l} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_{1}}{2} A_{\mu} Y \right) R_{l} \qquad L_{quarks} = \overline{R}_{u}^{(n)} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_{1}}{2} A_{\mu} Y \right) R_{u}^{(n)} + \overline{L}_{l} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_{1}}{2} A_{\mu} Y \right) R_{d}^{(n)} + \overline{L}_{q}^{(n)} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_{1}}{2} A_{\mu} Y \right) R_{d}^{(n)} + \overline{L}_{q}^{(n)} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_{1}}{2} A_{\mu} Y \right) R_{d}^{(n)} + \overline{L}_{q}^{(n)} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_{1}}{2} A_{\mu} Y \right) R_{d}^{(n)}$$

- All fermion and bosons are massless
 - Mass terms of type $m\phi^2$ or M^2W^2 violates local gauge invariance
 - Despite Electroweak symmetry, phenomenology of electromagnetic and weak interactions are quite different

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,					B	DSONS	f s	orce carrie spin = 0, 1	ers , 2,			
Leptons spin =1/2 Quarks spin =1/2		Unified Ele	ectroweak	spin = 1		Strong	(color) spir	ו =1				
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge
𝒫 lightest neutrino*	(0-0.13)×10 ⁻⁹	0	U up	0.002	2/3	Y	0	0		a	0	0
e electron	0.000511	-1	d down	0.005	-1/3	photon				gluon	U	U
M middle neutrino*	(0.009-0.13)×10 ⁻⁹	0	C charm	1.3	2/3	W	80.39	-1				
μ muon	0.106	-1	S strange	0.1	-1/3	W ⁺	80.39	+1				
𝒫H heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0	t top	173	2/3	W bosons	01 199	0				
τ tau	1.777	-1	b bottom	4.2	-1/3	Z boson	91.100	0				

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction	Strong Interaction
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons
Strength at $\int 10^{-18} \mathrm{m}$	10 ⁻⁴¹	0.8	1	25
3×10 ⁻¹⁷ m	10 ⁻⁴¹	10 ⁻⁴	1	60

$$L = L_{gauge} + L_{leptons} + L_{quarks}$$

$$L_{gauge} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} f_{\mu\nu} f^{\mu\nu} \qquad L_{leptons} = \overline{R_l} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_1}{2} A_{\mu} Y \right) R_l \qquad L_{quarks} = \overline{R_u}^{(n)} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_1}{2} A_{\mu} Y \right) R_u^{(n)} + \overline{L_l} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_1}{2} A_{\mu} Y + i \frac{g_2}{2} \tau \cdot W \right) L_l \qquad + \overline{R_d}^{(n)} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_1}{2} A_{\mu} Y \right) R_d^{(n)} + \overline{L_q}^{(n)} i \gamma^{\mu} \left(\partial_{\mu} + i \frac{g_1}{2} A_{\mu} Y + i \frac{g_2}{2} \tau \cdot W \right) L_q^{(n)}$$

- All fermion and bosons are massless
 - Mass terms of type $m\phi^2$ or M^2W^2 violates local gauge invariance
 - Despite Electroweak symmetry, phenomenology of electromagnetic and weak interactions are quite different
- To give masses to gauge bosons and fermions symmetry should be hidden (broken)

$$SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$$

Higgs Mechanism

Complex Scalar Field

• $\mu^2 > 0 \rightarrow S=0 m=\mu$

• Define a Potential

$$V(\phi) = \frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda^2\phi^4$$

 $\phi = \frac{1}{\sqrt{2}} (\phi_1 + i \phi_2)$

 $\langle 0 | \phi^2 | 0 \rangle = 0$

$$L = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

 $V(\phi) \rightarrow V(-\phi)$ ϕ^{3} not included

• $\mu^2 < 0 \rightarrow vev$

$$\langle 0|\phi^2|0\rangle = \frac{-\mu^2}{\lambda} = v^2$$

• Expand about vacuum $\phi(x) = v + \eta(x) + i\xi(x)$

• Identify mass terms

$$M=0 \qquad M=\mu$$

$$L = \frac{1}{2}(\partial_{\mu}\xi)^{2} + \frac{1}{2}(\partial_{\mu}\eta)^{2} + \mu^{2}\eta^{2}$$

$$+\lambda v (\eta\xi^{2} + \eta^{3}) - \frac{\lambda}{2}\eta^{2}\xi^{2} - \frac{\lambda}{4}\eta^{4} - \frac{\lambda}{4}\xi^{4} + const$$
Goldstone Theorem:
For every spontaneously broken symmethe theory contains massless scalar

Higgs Mechanism in Standard Model

• $\phi \rightarrow SU(2)$ isodoublet

$$\Phi(\mathbf{x}) = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \theta_2 + i \theta_1 \\ \frac{1}{\sqrt{2}} (\mathbf{v} + \mathbf{H}) - i \theta_3 \end{pmatrix} = e^{i \theta_a(\mathbf{x}) \tau^a(\mathbf{x})/\mathbf{v}} \begin{pmatrix} \mathbf{0} \\ \frac{1}{\sqrt{2}} (\mathbf{v} + \mathbf{H}(\mathbf{x})) \end{pmatrix}$$

• Gauge bosons masses

$$V(\Phi) = \frac{1}{2} \mu^{2} \Phi^{+} \Phi + \frac{1}{4} \lambda^{2} (\Phi^{+} \Phi)^{2} \qquad M_{W}$$
$$\langle \Phi \rangle = \langle 0 | \Phi | 0 \rangle = \begin{pmatrix} 0 \\ \frac{V}{\sqrt{2}} \end{pmatrix} \qquad M_{Z}$$

$$M_{W^{\pm}} = \frac{1}{2} v g_2$$
$$M_z = \frac{1}{2} v \sqrt{g_1^2 + g_2^2}$$
$$M_v = 0$$

- 3 bosons absorbed by W and Z bosons
 - Longitudinal polarization
 - Acquire masses
- 1 massive boson "free" Higgs boson

• Spin=0
$$m^2=2\lambda v^2=-2\mu^2$$

$$v = \frac{1}{\left(\sqrt{2} G_F\right)^{1/2}} \simeq 246 \, GeV$$

Fermion masses

$$\begin{split} L_{F} &= -\lambda_{e} \bar{L} \Phi e_{R} - \lambda_{d} \bar{Q} \Phi d_{R} - \lambda_{u} \bar{Q} \Phi u_{R} + h.c \\ &= -\frac{1}{\sqrt{2}} \lambda_{e} (\bar{v}_{e}, \bar{e}_{L}) \begin{pmatrix} 0 \\ v + H \end{pmatrix} e_{R} + \cdots \\ &= -\frac{1}{\sqrt{2}} \lambda_{e} (v + H) \bar{e}_{L} e_{R} + \cdots \end{split}$$

$$m_e = \frac{\lambda_e V}{\sqrt{2}}$$
, $m_u = \frac{\lambda_u V}{\sqrt{2}}$, $m_d = \frac{\lambda_d V}{\sqrt{2}}$

CIEMAT May 18th

Standard Model: Experimental tests

LEP EWWG Dec 2006

- Impressive experimental confirmations (LEP/SLD/TeVatron)
- Tested at <1%
- Cosmological implications

... BUT ...

- Higgs boson still missing
 - Only unknown parameter in EW sector

Standard Model Higgs?

Higgs and top masses enters into radiative corrections

$$\begin{split} M_{W}(GeV) = &80.3694 - 0.0579 \ln\left(\frac{M_{H}}{100 \, GeV}\right) - 0.008 \ln^{2}\left(\frac{M_{H}}{100 \, GeV}\right) - 0.5098 \left(\Delta \, \alpha_{had}^{(5)} \frac{(M_{Z})}{0.02761} - 1\right) \\ &+ 0.525 \left[\left(\frac{M_{t}}{172 \, GeV}\right)^{2} - 1\right] - 0.085 \left(\frac{\alpha_{s}(M_{Z})}{0.118} - 1\right) \end{split}$$

July, 2006 New top mass by CDF and D0 $M_{top}^{Tev} = 171.4 \pm 1.2(stat) \pm 1.8(sys) GeV/c^{2}$ $M_{ton}^{Tev} = 170.9 \pm 1.1(stat) \pm 1.5(sys) GeV/c^{2}$ March, 2007 New W mass by CDF **January**, 2007 $M_{W}^{CDF} = 80413 \pm 34(stat) \pm 34(sys)MeV/c^{2}$ $M_{\mu\nu}^{old} = 80392 \pm 29 MeV/c^2 \rightarrow M_{H} = 85_{-28}^{+39} GeV/c^2$ $M_{W}^{new} = 80398 \pm 25 MeV/c^{2} \rightarrow M_{H} = 80^{+36}_{-26} GeV/c^{2}$

CIEMAT May 18th

Standard Model Higgs?

Higgs and top masses enters into radiative corrections

$$\begin{split} M_{W}(GeV) = 80.3694 - 0.0579 \ln\left(\frac{M_{H}}{100 \, GeV}\right) - 0.008 \ln^{2}\left(\frac{M_{H}}{100 \, GeV}\right) - 0.5098 \left(\Delta \alpha_{had}^{(5)} \frac{(M_{Z})}{0.02761} - 1\right) \\ + 0.525 \left[\left(\frac{M_{t}}{172 \, GeV}\right)^{2} - 1\right] - 0.085 \left(\frac{\alpha_{s}(M_{Z})}{0.118} - 1\right) \end{split}$$

New top mass by CDF and D0

$$M_{top}^{Tev} = 171.4 \pm 1.2 (stat) \pm 1.8 (sys) GeV/c^{2}$$

January, 2007 New W mass by CDF $M_W^{CDF} = 80413 \pm 34(stat) \pm 34(sys) MeV/c^2$

$$M_{W}^{old} = 80392 \pm 29 \, MeV / c^{2} \rightarrow M_{H} = 85^{+39}_{-28} \, GeV / c^{2}$$

 $M_W^{new} = 80398 \pm 25 MeV/c^2 \rightarrow M_H = 80^{+36}_{-26} GeV/c^2$

CIEMAT May 18th

July, 2006

SM Higgs searches

CIEMAT May 18th

SM Higgs searches

Data prefers a non SM Higgs

Data prefers a light Higgs

LEP direct searches m_H>114 GeV

CIEMAT May 18th

STANDARD MODEL SHORTCOMINGS

Theoretical shortcomings

- Gravity remains outside SM
- Effective theory with 19 free parameters
 - Why three families?
 - Why EW symmetry should be broken?
 - Why $m_v \sim 10^{-12} m_t^2$?
- Unification problem: evolution of gauge couplings fails to meet at a common point at GUT scale (10¹⁶ GeV)
- Hierarchy problem:
 - Un-natural fine-tuning constraint of parameters

$$M_{H}^{2} = (M_{H}^{0})^{2} + \frac{3\Lambda^{2}}{8\pi^{2}v^{2}} \Big[M_{H}^{2} + 2M_{W}^{2} + M_{Z}^{2} - 4m_{t}^{2} \Big]$$

U. Amaldi, W. De Boer, H. Furstenau Phys.Lett.B260:447-455,1991.

Experimental shortcomings: Neutrino masses

- Neutrino masses not accounted for
- First direct signal of physics BSM

$$P_{\alpha \to \beta} = \sin^2 \theta_{\alpha \beta} \sin^2 \left(\frac{\Delta m^2 L}{4 E} \right)$$

hep-ph/(0405172
----------	---------

Parameter	Best Fit	3σ
$\Delta m_{21}^2 [10^{-5} eV^2]$	7.9	7.1-8.9
$\Delta m_{31}^2 [10^{-3} eV^2]$	2.6	2.0-3.2
$\sin^2 \theta_{12}$	0.3	0.24-0.40
$\sin^2 \theta_{23}$	0.5	0.34-0.68
$\sin^2 \theta_{13}$	0.000	≤0.040

Only WMAP
$$\Sigma m_{v} < 1.8 eV$$

CMB+LSS+SN $\Sigma m_{v} < 0.66 eV$

0

-1

-0.8

-0.6 -0.4 -0.2

cos0

0

-0.5 0

cos0

0.5

CIEMAT May 18th

Experimental shortcomings: Dark Matter

• Existence of Dark Matter:

If all mass is visible

$$v_c \sim 1/\sqrt{r}$$

• If an halo exists

$$\begin{array}{c} \rho(r) \sim 1/r^2 \\ M(r) \sim r \end{array} \rightarrow v_c \, const$$

• No particle in SM can play the role of dark matter

Begeman et al, Mon.Not.R.Astr.Soc 259 (1991)523

CIEMAT May 18th

Experimental shortcomings: Dark Energy

- Existence of Dark Energy:
 - (Re)discovered in 1998
 - Confirmed by CMB experiments
 - Inflation era

Riess et al, Astron.J. 116:1009 (1998)

Perlmutter et al. Astrophys.J.517:565-586,1999.

CIEMAT May 18th

Experimental shortcomings: Dark Energy

- Existence of Dark Energy:
 - (Re)discovered in 1998
 - Confirmed by CMB experiments
 - Inflation era

Experimental shortcomings: Dark Energy

- Existence of Dark Energy:
 - (Re)discovered in 1998
 - Confirmed by CMB experiments
 - Inflation era
 - ϕ^4 potential disfavoured by WMAP

Experimental shortcomings: Baryon asymmetry

- CP violation can explain but fails quantitatively
- Weak experimental evidence
 - No annihilation radiation <20Mpc
 - No cosmic diffuse γ shoulder
 - No distorsion of CMB Cohen, De Rujula, Glashow Astrophys.J. 495:539-549(1998)
- New generation of satellites/balloons
 - PAMELA
 - AMS-II
 - BESS

If antihelium found \rightarrow primordial antimatter If anti-nuclei Z>2 found \rightarrow anti-stars

Beyond SM: Supersymmetry

Supersymmetry (SUSY)

- Space-time symmetry relating fermions with bosons
 - Every known particle is associated with a new particle (sparticles) differing by ½ spin.
 - Same masses and gauge structure if not broken
 - R-parity (-1)^{2S+3B+L}
 - R_n = +1 ordinary particles
 - $R_{p} = -1$ sparticles
 - SUSY must be broken:

$$\begin{split} m(\tilde{\chi}_{1}^{\pm}) &> \sim 130 \; GeV/c^{2} \; CDF \\ m(\tilde{\chi}_{1}^{0}) &> \sim 122 \; GeV/c^{2} \; CDF \\ m(\tilde{l}_{R}) &> \sim 90 \; GeV/c^{2} \; LEP2 \\ m(\tilde{g}) &> \sim 195 \; GeV/c^{2} \; CDF \\ m(\tilde{q}) &> \sim 380 \; GeV/c^{2} \; CDF \end{split}$$

spin 1/2					
leptons	quarks				
$\left[\boldsymbol{\nu}_{e,\mu,\tau} \right]_{L}$	$[u, c, t]_{L, R}$				
$\left[e,\mu,\tau\right]_{L,R}$	$\left[d,s,b ight]_{L,R}$				

 $Q|Fermion| \Rightarrow |Boson|$

 $Q|Boson\rangle \Rightarrow |Fermion\rangle$

spin 1	spin 0
gauge bosons	higgs bosons
g	
W^{\pm}	H^{\pm}
γ, Z	h, H, A

sleptons	squarks		Colv
$\left[\tilde{\mathcal{V}}_{e,\mu,\tau}\right]_{I}$	$\left[\widetilde{u}, \widetilde{c}, \widetilde{t} \right]_{L,R}$	•	2010
$\begin{bmatrix} e, \mu, \tau \end{bmatrix}_L$	$\begin{bmatrix} \gamma & \gamma \end{bmatrix}$	•	Prov
$\left[\tilde{e},\tilde{\mu},\tilde{\tau}\right]_{L,R}$ $\left[d,\tilde{s},b\right]_{L,R}$			New
	4.10	l	ofac
spir	1/2		UI Ya
gauginos	higgsinos		• N
õg		•	Loca
$ ilde W^{\pm}$	$ ilde{H}^{\pm}$	$ ilde{\chi}_i^{\pm}$, <i>i</i> =1,2
$ ilde{B}$, $ ilde{W}^0$	${ ilde H}^{0,}_1{ ilde H}^0_2$	${ ilde \chi}^0_i$, <i>i</i> =14

spin 0

- Solve hierarchy problem
- Provides a candidate for DM
- New particles contribute to unification of gauge coplings
 - M_{GUT} ~ 10¹⁶ GeV
- Local SUSY leads to quantum gravity

CIEMAT May 18th

Supersymmetry (SUSY)

- Minimal Supersymmetric Standard Model (MSSM)
 - SM gauge group
 - Minimal particle content
 - R-parity conservation
 - Minimal set of soft SUSY-breaking terms
 - Mass terms for gluinos, winos, binos and scalar fermions
 - Mass and bilinear terms for Higgs bosons
 - Trilinear couplings between sfermions and Higgs bosons
- Unconstrained MSSM \rightarrow 105 new parameters
- Constrained MSSM \rightarrow 22 new parameters
 - SUSY breaking parameters real (no CP-violation)
 - sfermion and coupling constants diagonal (No FCNC)
 - First/Second mass parameters are equal

Supersymmetry (SUSY): mSUGRA

SUSY Decays

Physics at the Terascale

Physics Landscape in 2007

- Impressive success of SM
 - Clear hints that some extension is needed
 - Neutrino masses
 - Hierarchy problem
- Higgs not discovered
 - direct search at LEP m_{μ} >114 GeV/c²
 - SM corrections m_{μ} <160 GeV/c²
- Extensions of SM
 - Up to know only exclusion limits.
 - Huge number of theories possible

Physics in the TeV range

- Reveal Electroweak Symmetry Breaking (EWSB)
 - Higgs Mechanism in SM and BSM
 - Experimentally signaled by one or more scalars
 - Discover new particles
 - Check its nature: mass, couplings, spin, parity, etc ...
 - If not found (no Higgs or Higgs too heavy)
 - Detailed study of WW,ZZ production
 - Four-gauge vertices highly suppressed in SM
 - Possible existence of strong interactions in the EW sector
- Decode SUSY sector
 - In case multiple particles found
 - Check its nature: mass, couplings, spin, parity, etc
 - Association with particles
- Search for Beyond SM signatures
 - Study of Extra Dimensions
 - Extended Gauge Structure
 - Little Higgs models

Physics in the TeV range

- Detailed study of gauge bosons couplings
 - Search for anomalous gauge couplings
 - Study of quartic couplings
- Top quark physics
 - Mass and Width
 - Coupling with gauge bosons

What are the experimental conditions needed to cover all these topics?

hadron collider: LHC e+e- collider: ILC

LARGE HADRON COLLIDER LHC

Large Hadron Collider

- pp collider @ 14 TeV
- 4 Experiments
 - CMS,ATLAS
 - LHCb
 - ALICE

• Luminosity

	2007	2008	2009-2010	2011-2015
Inst. (cm ⁻² s ⁻¹)	3x10 ²⁹ -2x10 ³¹	10 ³² -2x10 ³³	2x10 ³³	10 ³⁴
Integral	10 pb ⁻¹	<5 fb⁻¹	10 -30 fb ⁻¹	100 -300 fb ⁻¹

 Upgrade in luminosity in 2015? (sLHC)

• Upgrade in Energy???

CIEMAT May 18th

LHC: Beam structure

	#bunches	$\Delta t_{_{bunch}}$	Crossing angle	<i>p</i> /bunch	Peak Luminosity	
Pilot Run	43→156	-	0 µrad	(1-5)x10 ¹⁰	3x10 ²⁹ -2x10 ³¹	@900GeV
First Physics	936→2808	75→25 ns	0→250 µrad	5x10 ¹⁰	10 ³² -2x10 ³³	
Low luminosity	2808	25 ns	285 µrad	5x10 ¹⁰	2x10 ³³	
High Luminosity	2808	25 ns	285 µrad	1.15x10 ¹¹	10 ³⁴	

- Background
 - 20 interactions/BX (high lum)
 - ~700 charged particles/BX
 - 50 MHz/cm² \rightarrow 10kHz/pixel (R= 5cm)
 - Integrated dose:
 - 840 kGy (R=5cm)
 - 0.2-1000 kGy (HCAL)

LHC: Trigger

• LHC total event rate ~ 10⁹ Hz

inelastic pp scattering : 10^9 Hz single W \rightarrow I v : 10^2 Hz tt production : 10 Hz Higgs(m_H=100 GeV/c²) : 0.1 Hz Higgs(m_H=600 GeV/c²) : 10^{-2} Hz

- decision to be taken every 25 ns
 - reduce rate $10^9 \text{ Hz} \rightarrow 100 \text{ Hz}$
 - trigger decision taken in several trigger levels of increasing refinement
 - Level 1 (hardware)
 - Calorimeter trigger: γ , e, τ , jets, E_{τ} , $E_{mis}^{1 pb}$
 - Muon Trigger
 - High Level Trigger (software)
 - Regional event reconstruction

INTERNATIONAL LINEAR COLLIDER ILC

International Linear Collider

- International proposal to build an electron-positron linear collider
 - International: world-wide effort
 - Linear: $\Delta E_{\text{brems}} \propto E^4/R$
- Main characteristics
 - E_{cm} tunable
 - Phase I : 200-500 GeV
 - Phase II: upgradable to 1 TeV
 - Luminosity
 - Peak: 2 x 10³⁴ cm⁻² s⁻¹
 - in 4 years: ~500 fb⁻¹
 - Energy stability <0.1%
 - Polarization
 - electrons: >80%
 - positrons: >60% (option)
 - option for e^--e^- and $\gamma-\gamma$ collisions

http://www.linearcollider.org

- Proposal level
 - RDR issued Feb 2007
- No site chosen
 - America: FNAL
 - Asia: Japan
 - Europe: CERN
- Economical case

ILC - Economic Case

http://www.economist.com/science/displaystory.cfm?story_id=8810981

NOT content with spending around \$10 billion on a shiny new collider at CERN, the European particle physics laboratory in Geneva, physicists are now campaigning for its successor. The International Linear Collider (ILC), as the machine is dubbed, would cost a mere \$8.2 billion, according to its backers. Ray Orbach, the head of America's Office of Science, gave a warning last month that, although he supports the project, it is too expensive to build rapidly. The first data to come from such a collider would probably not emerge until the mid- to late-2020s

(...)

For diplomatic reasons, **three designs have been drafted**. One is tailored to geological conditions at Fermilab, near Chicago. The second is suitable for construction at CERN. A third would be appropriate for a mountainous area of granite in Japan. **The winner** will probably be **whoever has the biggest chequebook**.

ILC: Project overview

- 1 Interaction point
 - collisions at 7 mrad
 - 2 experiments (push-pull)

	ILC	CLIC
Accelerating Gradient	31.5 MV/m	150 MV/m
Accelerating RF	1.3 Ghz	30 Ghz
Length for 500 Gev	31 km	6.4 km
Lenght for 1 TeV	50 km	14.4 km
Length for 3 TeV	-	37 km

ILC: Schedule

- 1 Interaction point
 - collisions at 7 mrad
 - 2 experiments (push-pull)
 - Form collaborations ~2010

- Schedule (best case)
 - design ~2010
 - begin construction ~2012
 - end construction ~2019

ILC: Beam structure + Trigger

- 2820 (4500) bunches spaced by 337 (189) ns
- 199 ms between trains (5 Hz Bunch Trains)

- Background
 - Beamstrahlung
 - 140.000 e+e- pairs/BX (mostly within beam pipe)
 - 0.03(0.05) hits/mm²/BX @ E=500(800) GeV, R=15mm, B=4T
 - Bunch train = 85 hits/mm²/BT. 10% occupancy for 25 μ m² pixel
 - Two photon events: $e^+e^- \rightarrow e^+e^-$ +hadrons
 - 0.02/BX with visible tracks
 - ~400 hits/BX in vertex detectors
 - ~5 tracks/BX in central tracking
 - ~20 readout cycles/BT (47.5 $\mu s)$ to keep occupancy low
 - 50 MHz (20 ns) readout @ detector level
- NO ELECTRONIC TRIGGER
 - All physics on tape is unbiased

Event Rates @ 500 GeV

$e^+e^- \rightarrow e^+e^- (\theta > 20 \text{mrad})$	210 s ⁻¹
e⁺e⁻ →qq (q≠t)	960 h⁻
$e^+e^- \rightarrow W^+W^-$	560 h⁻¹
$e^+e^- \rightarrow tt$	42 h⁻́
$e^+e^- \rightarrow ZH (M = 120GeV)$	4 h ⁻

CIEMAT May 18th

ILC: Operation Modes

- Maximum energy
 - √s = 0.5/1 TeV
 - Machine in "discovery" mode
- Threshold scan
 - To measure (selected) particles masses.
- Enhanced particle production
 - Produce maximum of particles in a channel.
- GigaZ mode
 - $\sqrt{s} = 91 \text{ GeV} \rightarrow 10^9 \text{ Z decays in } < 1 \text{ year}$
 - ~4x10⁶ Z/exp in LEPI
 - Go to this point from time to time for calibration
- MegaW mode
 - $\sqrt{s} = 2 M_w \text{ GeV} \rightarrow 10^6 \text{ W}$ decays in < 1 year
 - ~10⁴ W/exp in LEPII

LHC AND ILC INTERPLAY

LHC vs ILC

LHC vs ILC

LHC: pp @ 14 TeV Discovery machine

- Parton scattering up to several TeV
 - CM energy not defined
 - Energy conservation in transverse plane
- Pile-up: 5-20 / bunch crossing
- Strong interactions
 - Huge QCD backgrounds
 - Underlying events
- Interaction rate 10⁹
- Trigger: 1 event in 10⁷ CIEMAT May 18th

- Clean exp. Environment
 - 4-momentum conservation
- Well defined initial state
- Tunable CM energy
- Beam polarization possible
- γγ,e-γ,e-e- options
- Untriggered
 - Can find signal of unexpected new physics

LHC and ILC interplay

- Different situations
 - LHC (almost) ready
 - ILC still in design phase
- LHC analysis could profit from results obtained at ILC and vice-versa.
 - Working group stablished in 2002

hep-ph/0410364 Phys. Rep. 426 (2006) 47

- Complementarity
 - ILC will add precision, but ...
 - ILC can also make discoveries
- Synergy
- Concurrency
 - Not necessary but helps....

CIEMAT May 18th

ILC precision

Synergy and Concurrency

• LHC/ILC interplay working group has provided various examples

hep-ph/0410364 Phys. Rep. 426 (2006) 47

- Various scenarios
 - LHC + LC \rightarrow No interaction
 - LHC \oplus LC \rightarrow Experiments will give inputs to each other
 - LHC \otimes LC \rightarrow Combined analysis: need "standard" data format
- Here presented just two examples:
 - Search of SM Higgs
 - Search of Supersymmetry

SEARCH OF STANDARD MODEL HIGGS

SM Higgs production at LHC

better signal / bkg ratio reached by

a

- double forward jet tagging
- Central Jet Vetoing techniques

SM Higgs production at ILC

	LHC	ILC
1. Find a new particle	 Image: A set of the set of the	
2. Measure its mass	 Image: A set of the set of the	
3. Measure coupling to gauge bosons		
4. Measure coupling to fermions		
5. Measure self-couplings		
6. Measure spin		

• LHC:

- Search for selected channels
 - $H \rightarrow \gamma \gamma$ $m_{_H} \in [114, 130]$
 - H → ZZ* m_H ∈ [130,150] m_H > 180

• $H \rightarrow WW^{(*)}$

	LHC	ILC
1. Find a new particle	~	
2. Measure its mass	✓	
3. Measure coupling to gauge bosons		
4. Measure coupling to fermions		
5. Measure self-couplings		
6. Measure spin		

• LHC:

- Search for selected channels
 - $H \rightarrow \gamma \gamma$ $m_{_H} \in [114, 130]$
 - $H \rightarrow ZZ^{(*)}$ $m_{_{H}} \in [130, 150]$ $m_{_{II}} > 180$

• $H \rightarrow WW^{(*)}$

CIEMAT May 18th

	LHC	ILC
1. Find a new particle	 ✓ 	
2. Measure its mass	 ✓ 	
3. Measure coupling to gauge bosons		
4. Measure coupling to fermions		
5. Measure self-couplings		
6. Measure spin		

• LHC:

- Search for selected channels
 - $H \rightarrow \gamma \gamma$ $m_{_H} \in [114, 130]$
 - $H \rightarrow ZZ^{(*)}$ $m_{_{\rm H}} \in [130, 150]$ $m_{_{\rm H}} > 180$

• $H \rightarrow WW^{(*)}$

CIEMAT May 18th

	LHC	ILC
1. Find a new particle	~	 ✓
2. Measure its mass	✓	 Image: A set of the set of the
3. Measure coupling to gauge bosons		
4. Measure coupling to fermions		
5. Measure self-couplings		
6. Measure spin		

• ILC:

- $e^+e^- \rightarrow HZ \rightarrow I^+I^-X$
- $e^+e^- \rightarrow HX \quad H \rightarrow qq$
 - Possible if good quark id.
- Few fb⁻¹ needed for a 5σ signal

SM Higgs: Couplings

	LHC	ILC
1. Find a new particle	~	 Image: A second s
2. Measure its mass	✓	 Image: A second s
3. Measure coupling to gauge bosons	 ✓ 	
4. Measure coupling to fermions	 Image: A set of the set of the	
5. Measure self-couplings		
6. Measure spin		

 $\sigma(gg \rightarrow H) \propto \Gamma(H \rightarrow gg)$ Theory syst. ~10%

 $\sigma(qq \rightarrow qqH) \propto \Gamma(H \rightarrow VV)$ Theory syst. ~5-%

• LHC:

- Total Higgs width and partial widths impossible without theoretical assumptions.
- Not all final states observable
 - $H \rightarrow bb$ large exp uncertainities
 - $H \rightarrow ee, \mu\mu$ non-obs. rate
 - H→qq,gg unidentifiable
- Narrow width approx (M_H<200GeV)

$$\sigma(H) \times BR(H \to x) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \times \frac{\Gamma_p \Gamma_x}{\Gamma_{tot}}$$

$$\frac{\Gamma(H \to ff) \quad \propto g^2(H, f)}{\Gamma(H \to VV) \quad \propto g^2(H, V)}$$

$$\frac{\Gamma(H \to gg) \quad \propto g_{eff}^2(H, f) \propto g^2(H, t)}{\Gamma(H \to \gamma \gamma) \quad \propto g_{eff}^2(H, \gamma) \propto g^2(H, t)}$$

• Determination using a global fit, under some assumptions

$$\begin{split} \Gamma_{V} \leq \Gamma_{V}^{SM} & upper limit \\ \Gamma_{H} < \Gamma_{W} + \Gamma_{Z} + \Gamma_{t} + \Gamma_{\tau} + \Gamma_{b} & lower limit \\ 57 \end{split}$$

CIEMAT May 18th

SM Higgs: Couplings

	LHC	ILC
1. Find a new particle	 Image: A set of the set of the	 Image: A second s
2. Measure its mass	 Image: A set of the set of the	 Image: A second s
3. Measure coupling to gauge bosons	 Image: A second s	
4. Measure coupling to fermions	 Image: A set of the set of the	
5. Measure self-couplings		
6. Measure spin		

• LHC:

- Total Higgs width and partial widths impossible without theoretical assumptions.
- Not all final states observable
 - $H \rightarrow bb$ large exp uncertainities
 - $H \rightarrow ee, \mu\mu$ non-obs. rate
 - H→qq,gg unidentifiable
- Narrow width approx (M_H<200GeV)

$$\sigma(H) \times BR(H \to x) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \times \frac{\Gamma_p \Gamma_x}{\Gamma_{tot}}$$

$$\frac{\Gamma(H \to ff) \quad \propto g^2(H, f)}{\Gamma(H \to VV) \quad \propto g^2(H, V)}$$

$$\frac{\Gamma(H \to gg) \quad \propto g^2_{eff}(H, f) \propto g^2(H, t)}{\Gamma(H \to \gamma \gamma) \quad \propto g^2_{eff}(H, \gamma) \propto g^2(H, t)}$$

Determination using a global fit, under some assumptions $\Gamma_V \leq \Gamma_V^{SM}$

SM Higgs: Couplings

	LHC	ILC
1. Find a new particle	✓	 Image: A second s
2. Measure its mass	✓	 Image: A second s
3. Measure coupling to gauge bosons	 Image: A set of the set of the	 Image: A set of the set of the
4. Measure coupling to fermions	 Image: A set of the set of the	 Image: A second s
5. Measure self-couplings		
6. Measure spin		

• ILC:

- Almost all couplings in a model independent way
- High accuracy
 - BR < 5%
 - ∆g/g ~ 1-3%

Coupling	$M_H = 120 \mathrm{GeV}$	$140{ m GeV}$
g_{HWW}	± 0.012	± 0.020
g_{HZZ}	± 0.012	± 0.013
g_{Htt}	± 0.030	± 0.061
g_{Hbb}	± 0.022	± 0.022
g_{Hcc}	± 0.037	± 0.102
$g_{H au au}$	± 0.033	± 0.048

- g_{Htt} and $g_{H\gamma\gamma}$ bad measured at $\sqrt{s}=500$ GeV.
 - ∆g/g ~ 5-10%

SM Higgs: Couplings. LHC/ILC Interplay

	LHC	ILC
1. Find a new particle	 Image: A set of the set of the	×
2. Measure its mass	 Image: A set of the set of the	 Image: A second s
3. Measure coupling to gauge bosons	 Image: A second s	✓
4. Measure coupling to fermions	 Image: A set of the set of the	 Image: A set of the set of the
5. Measure self-couplings		
6. Measure spin		

• Give ILC inputs to LHC analysis

- Harder constraints
- Possible to measure absolute couplings
- Independent analysis
- Higher accuracy even in g_{Htt}

SM Higgs: Self-couplings

	LHC	ILC
1. Find a new particle	✓	 Image: A second s
2. Measure its mass	✓	 Image: A second s
3. Measure coupling to gauge bosons	 ✓ 	 Image: A set of the set of the
4. Measure coupling to fermions	✓	\checkmark
5. Measure self-couplings	 Image: A second s	 ✓
6. Measure spin		

• LHC:

- Extremely difficult
- ILC:
 - Small cross-sections ~0.1 fb
 - Large backgrounds expected
 - Excellent flavor tagging needed
 - Multijet+Multilepton events
 - Modest accuracies achieved
 - $\sqrt{s}=500 \text{ GeV}, L\sim 1ab^{-1}, m_{H} < 140$
 - σ(e⁺e⁻→HHZ) ~ 20%
 - Δλ_{ннн} ~ 22%
 - Increasing energy and using polarization
 - Δλ_{HHH} ~ 12%

	LHC	ILC
1. Find a new particle	✓	✓
2. Measure its mass	✓	 ✓
3. Measure coupling to gauge bosons	✓	×
4. Measure coupling to fermions	✓	 Image: A set of the set of the
5. Measure self-couplings	 Image: A set of the set of the	 Image: A second s
6. Measure spin	✓	

• LHC:

- Spin 1 ruled out if
 - Decays $H \rightarrow \gamma \gamma$ observed
 - Production in gluon fusion
- WBF H \rightarrow WW \rightarrow I $_{\rm V}$ I $_{\rm V}$
 - Spin 0: Exploit collinear leptons topology (spin correlations)

- Angular correlations in gg H→ ZZ→4I
 - Measure J^{PC}
 - Some 10th fb⁻¹ needed

	LHC	ILC
1. Find a new particle	~	✓
2. Measure its mass	 ✓ 	 Image: A second s
3. Measure coupling to gauge bosons	 Image: A set of the set of the	 Image: A second s
4. Measure coupling to fermions	✓	✓
5. Measure self-couplings	 Image: A set of the set of the	✓
6. Measure spin	✓	✓

• ILC:

- Spin can be measured with e⁺e⁻
 →ZH behaviour near threshold
 - Needed ~20 fb⁻¹
- CP can be measured:
 - Angular distribution of Z/H in Higgs-strahlung
 - Correlations in $H \rightarrow \tau \tau$
 - Angular correlations in gg H→ ZZ→4I

	LHC	ILC
1. Find a new particle	 Image: A second s	✓
2. Measure its mass	 ✓ 	\checkmark
3. Measure coupling to gauge bosons	 Image: A set of the set of the	 Image: A second s
4. Measure coupling to fermions	 Image: A set of the set of the	 Image: A second s
5. Measure self-couplings	 Image: A set of the set of the	 Image: A second s
6. Measure spin	✓	 Image: A second s

• ILC:

- Spin can be measured with e⁺e⁻
 →ZH behaviour near threshold
 - Needed ~20 fb⁻¹
- CP can be measured:
 - Angular distribution of Z/H in Higgs-strahlung
 - Correlations in $H \rightarrow \tau \tau$
 - Angular correlations in gg H→ ZZ→4I

64

	LHC	ILC
1. Find a new particle	✓	 Image: A second s
2. Measure its mass	✓	 Image: A second s
3. Measure coupling to gauge bosons	 Image: A set of the set of the	\checkmark
4. Measure coupling to fermions	✓	 Image: A second s
5. Measure self-couplings	 Image: A set of the set of the	✓
6. Measure spin	✓	 Image: A second s

• ILC:

- Spin can be measured with e⁺e⁻
 →ZH behaviour near threshold
 - Needed ~20 fb⁻¹
- CP can be measured:
 - Angular distribution of Z/H in Higgs-strahlung
 - Correlations in $H \rightarrow \tau \tau$
 - Angular correlations in $H \rightarrow ZZ \rightarrow 4I$

CIEMAT May 18th

SEARCH OF SUPERSYMMETRY

Discovering Supersymmetry

- Find (all) sparticles
 - Masses
 - Decay widths, BR, production cross sections
- Verify that all particles have a superpartner
 - Spins differ in 1/2
 - Gauge quantum numbers are the same
 - Couplings are identical
 - Mass relation holds
- Understand low-energy SUSY parameters
- Understand SUSY symmetry breaking mechanism (GUT)

Here just discussed discovery and mass determination

SUSY: Discovery

- LHC
- Up to few TeV
 - Gluino/squark
 - gg fusion
 - slepton/chargino/neutralino
 - Drell-Yan
 - Indirectly in Decays
- Inclusive discovery

- ILC
- Up to $m < \sqrt{s/2}$
- Lepton distributions in the continuum
 - e+e- pol. Reduces bkg.

SUSY: Discovery

- LHC
- Up to few TeV
 - Gluino/squark
 - gg fusion
 - slepton/chargino/neutralino
 - Drell-Yan
 - Indirectly in Decays
- Inclusive discovery

- ILC
- Up to $m < \sqrt{s/2}$
- Lepton distributions in the continuum
 - e+e- pol. Reduces bkg.

SUSY: Mass at LHC

 q_1

 $\tilde{\chi}_2^0$

 $\tilde{q}_{\rm L}$

 $\tilde{\ell}_{R}^{\mp}$

 $\tilde{\chi}_1^0$

- Challenging
 - Long decay chains
 - No kinematical constraints (boost)
 - LSP: no mass rec evt-by-evt
- Mass based in kinematical endpoints

SUSY: Mass at ILC

- Continuum
 - Measure kinematical endpoints

 $e^{+}e^{+} \rightarrow \tilde{l}_{i}^{+}\tilde{l}_{j}^{-}$ $m_{\tilde{l}^{+}} = \frac{\sqrt{s}}{E_{-} + E_{+}}\sqrt{E_{-}E_{+}}$ $m_{\tilde{\chi}_{1}^{0}} = m_{\tilde{l}}\sqrt{1 - \frac{E_{-} + E_{+}}{\sqrt{s/2}}}$

- Threshold scan
 ~10 fb⁻¹ per point
- Precision on masses ~0.5-1%

SUSY: Mass - LHC/ILC

- Measure χ^0 from ILC
- Use kinematical endpoints analysis
- LHC: 300 fb-1
- Precision in masses
- Precision in SUSY parameters

	LHC	LHC + ILC
${\it \Delta}m_{ ilde{\chi}_1^0}$	4.8	0.19
$\Delta m_{\tilde{l}_R}$	4.8	0.34
$\Delta m_{ ilde{\chi}^0_2}$	4.7	0.24
$\Delta m_{\tilde{q}_L}$	8.7	4.90
$\Delta m_{\tilde{b}_1}$	13.2	10.50

$\Delta m_{\tilde{g}}$	8.0	6.40
$\Delta m_{\tilde{q}_R}$	11.8	10.90
$\Delta m_{\tilde{b}_2}$	7.9	6.30
$\Delta m_{\tilde{l}_L}$	5.0	1.60
$\Delta m_{ ilde{\chi}_4^0}$	5.1	2.25
DETECTORS FOR ILC

ILC events

- What kind of events do we expect?
 - ILC can be seen as gauge boson factory
 - Final states will have
 - Multiple jets
 - Multiple leptons
 - Missing Energy
 - Same final state can be interpreted in many different way

ILC events

Detector Concepts

 4 detector concepts proposed based on "conventional" cylindrical geometries

"My" typical detector

- ILC detectors will be "conventional"
 - VTX
 - Tracking device (TPC most likely)
 - (Sampling) Calorimeters
 - Magnet (3-5 T)
 - Muon system
- No big conceptual changes expected
 - More granularity
 - Use machine cycle for:
 - Collision in 1ms/200ms: Duty cycle 0.5%
 - Power saving
 - Avoid cooling systems
- "New" analysis paradigm: Particle Flow

Could a LEP-like detector do the work?

General Requirements

- ILC = precision measurements
- Reconstruction of all channels
 - Hermeticity
 - Expected channels with missing energy: neutrinos and neutralinos
 - Good angular coverage \rightarrow forward regions
 - Particle/flavor identification \rightarrow granularity
- High efficiency
 - Well establish detection techniques
- Lowest possible systematics
 - Stability with time
 - Radiation hardness
 - Minimum material
- Insensitive to machine related backgrounds
 - Fast electronics

Requirements from Physics: Tracking

Measurement of recoil mass in

 $e^+e^- \rightarrow HZ \rightarrow \mu^+\mu^-X$

• Kinematic endpoints in SUSY decays

 $\tilde{e}_{L}(203GeV) \rightarrow \tilde{\chi}_{1}^{0}(96GeV)e^{-}$ $E_{L}\sim 5GeV$ $E_{+}\sim 225GeV$

Upper limit depends strongly on tracking resolution

a = stochastic term

b = multiple scattering term

	DELPHI	CMS	ILC
a (Gev/c) ⁻¹	0.6 ·x·10 ⁻³	0.15 x 10 ⁻³	5 x 10⁻⁵
b	-	0.005	0.001

Central tracking

- Largest radius possible
- Absence of "pointing" cracks
- •
- Extended tracking regions
 - |cos θ| < 0.98 |θ|>11°
 - $|\cos \theta| < 0.87 |\theta| > 29^{\circ}$ in DELPHI

Forward regions covered with silicon microstrips wheels

	ILC	DELPHI
Momentum resolution	$\delta(1/p_t) = 10^{-4} (GeV/c)$	$\delta(1/p_t) = 10^{-3} (GeV/c)$
Single point resolution (r-f)	100 μm	250 μm
Single point resolution (r-z)	0.5 mm	880 μm
2 track resolution (r-f)	<2 mm	<1 cm
2-track resolution (r-z)	<5 mm	<1 cm

Requirements from Physics: Flavor tagging

• Recoil mass in

 $e^+e^- \rightarrow HZ \rightarrow q \bar{q} X$

- Measure Higgs branching ratios
- Z/W reconstruction

• Full vertex reconstruction

$$\sigma_{R\phi}^{IP} = \frac{\alpha_{MS}}{p \sin^{3/2} \theta} \oplus \sigma_{R\phi}^{0}$$
$$\sigma_{z}^{IP} = \frac{\alpha_{MS}^{'}}{p \sin^{5/2} \theta} \oplus \sigma_{z}^{0}$$
$$\sigma_{z}^{IP} \propto \sqrt{X} r$$

	DELPHI	CMS	ILC
α _{MS} (μm GeV/c)	65	80	10
σ _{RΦ} (μm)	20	9	5
α' _{мs} (μm GeV/c)	71-151	200	
σ _z (μm)	39-96	10	
			8

Requirements from Physics: Flavor tagging

Recoil mass in

 $e^+e^- \rightarrow HZ \rightarrow q \,\overline{q} \, X$

- Measure Higgs branching ratios
- Z/W reconstruction

• Full vertex reconstruction

Requirements from Physics: Flavor tagging

Recoil mass in

 $e^+e^- \rightarrow HZ \rightarrow q \bar{q} X$

- Measure Higgs branching ratios
- Z/W reconstruction

• Full vertex reconstruction

	DELPHI	CMS	ILC
Layer 1	63 mm	44 mm	15 mm
Layer 2	90 mm	73 mm	22 mm
Layer 3	109 mm	102 mm	35 mm
Layer 4			48 mm
Layer 5			61 mm

	DELPHI	CMS	ILC
α _{мs} (μm GeV/c)	65	80	10
$\sigma_{_{R\Phi}}(\mu m)$	20	9	5
α' _{мs} (μm GeV/c)	71-151	200	
σ _z (μm)	39-96	10	
			04

Requirements from Physics: Jet Energy resolution

- Events at ILC will have several bosons and fermions.
- Distinction of WW from ZZ

$$\frac{\Delta(E)}{E} = 0.3$$

- Study of e⁺e⁻→WW
- Higgs BR to WW or ZZ
- Higgs self-coupling in HHZ events

Z to	BR	
$\ell^+\ell^-$	10 %	
Qq (jets)	70 %	

W to	BR
$\ell^{\pm}\nu$	32 %
qq' (jets)	68 %

H(120,SM) to	BR	
$\ell^+\ell^-$	<15 %	
qq(jets),WW,ZZ	>85 %	

How much should calorimeters improve?

	ΔE _J = a×√E _J ⊕ b×E _J ⊕ c					
	a b c					
ALEPH	0.59	0	0.6			
ATLAS	0.6	0.03	0			
H1	0.5	0.05	0			
ILC	0.3	0	0.5			

CIEMAT May 18th

How? Particle Flow

- Particle Flow needs
 - 1) Reconstruction of ALL final state particles
 - 2) Find charged particles in the tracker syste
 - 3) Find photons in the ECAL
 - 4) Find neutral hadrons in ECAL and HCAL
 - 3) and 4) are only possible if there is no mixing between deposited energy from different particles
- Calorimeters should be then
 - far away from IP
 - dense (small lateral spread of showers)
 - high granularity
 - Detector readout in 3D
 - Small pixel size (< Moliere radius)
 - ECAL and HCAL inside the coil

Perfect Algorithm ----

Real Life: Efficiency Confusion – Recons. Thres.

E _{jet} = E _{charged track}	s + E + E _h o
fraction 65%	26% 9%
Charged track(s) 10 ⁻⁵	∆ p/p ~ qq
Photon(s)	∆E/E ~12%
Neutral hadrons	∆E/E ~45%

$$\sigma^{2}$$
jet = σ^{2} ch + $\sigma^{2}\gamma$ + $\sigma^{2}h^{\circ} \approx (0.14)^{2}$ E

'iet

Conclusions

- Present understanding points out to an SM revision
 - Theoretical and experimental
 - "Something" should happens below 1 TeV
- Two main tools needed to explore this region
 - LHC: starts this year \rightarrow main effort
 - ILC: still to be approved/constructed
 - Interplay needed to disentangle physics underneath
- Detector challenges: compulsory R+D now

"Delay always breeds danger and to protract a great design is often to ruin it"

Barry Barish GDE/ILC Director quoting Miguel de Cervantes in *Don Quixote*

ILC - Polarization

$$\sigma_{P_{e^-}P_{e^+}} = \frac{(1+P_{e^-})(1+P_{e^+})}{4} \sigma_{RR} + \frac{(1-P_{e^-})(1-P_{e^+})}{4} \sigma_{LL} + \frac{(1+P_{e^-})(1-P_{e^+})}{4} \sigma_{RL} + \frac{(1-P_{e^-})(1+P_{e^+})}{4} \sigma_{LR}$$

- Polarized beams can be used to suppress some bkg
 - SM couples with LR or RL
 - BSM can also with LL and RR

Accelerators Comparison

$$L \sim \frac{n_b N_e^2 f}{4 \pi \sigma_x \sigma_y} H_D$$

	LEP	LHC	SLC	ILC
Energy (GeV)	45-100	7000	45	200-500
Time between collisions (µs)	22	0.025	8300	0.2-0.337
Beam dimensions	X: 200 µm	X: 16.7 μm	X: 1.4 µm	X: 543 nm
	Y: 2.5 µm	Y: 16.7 μm	Y: 0.7 μm	Y: 5.7 nm
	Z: 1.0 cm	Z: 7.7 cm		Z: 300 µm
Particles per bunch (x10 ¹⁰)	45	12	4	2
Bunches per ring	4 in trains <4	2808		2820-4000
Luminosity (10 ³⁰ cm ⁻² s ⁻¹)	24-100	10000	3	20000
Radiation	_	~1 Grad/year	_	~20 krad/year

pp(bar) cross section

ILC precision

SM Higgs Decays

A.Djouadi, J.Kalinowski, M.Spira (incl. all NLO-QCD corrections)

Higgs discovery at CDF?

New W mass from CDF

Hadronic showers simulation

G.Mavromanolakis (Cambridge Univ.)

ILC Forward Region

Vertex Detectors

- Based on pixel detectors (\sim 15-25 µm)
 - **DEPFET** (Depleted Field Effect **Transistor**)
 - Combined function of sensor and amplifier
 - Low noise
 - Internal storage until reset
 - Readout at 50 MHz

CIEMAT May 18th

98

Vertex Detectors

- Based on pixel detectors (~15-25 μm)
 - CPCCP (Column Parallel CCD)
 - Need to read @ 50 MHz
 - ~20 mm depletion layer
 - ~1000 e

- ISIS (In Situ Internal Storage)
 - Charge collected under a photogate
 - Charge transferred to 20 pixel in situ during bunches
 - Time tag
 - Conversion during beam quiet period
 - 1 Mhz readout enough

CIEMAT May 18th

Central Tracker

 $\sigma(1/p) = 6 \times 10^{-5} \, \text{GeV}^{-1}$

• 200 physicist/engineers

- 38 institutes
- 12 countries

A high granularity calorimeter optimised for the Particle Flow measurement of multi-jets final state at the International Linear Collider running at a center-of-mass between 90 GeV and 1 TeV

	Material	Pixel Size	RO layers	Readout
ECAL	W+Si	1X1 cm ²	20-30	Si Pad
ECAL	W+Scin	3x3 cm ²	20-30	Si Pms
AHCAL	Steel+Scin	4x4 cm ²	~50	Si Pms
DHCAL	Steel+Gas	1X1 cm ²	~50	RPC/GEM/uMega

15-250 Millions channels for ECAL

~50 Millions channels for HCAL

CALICE collaboration

- Share major efforts
 - Front-End Chips (xxROC)
 - Common DAQ
 - Common Framework Analysis (Grid, Data Format)
 - Coordinate Test Beams
- MC Validation
 - Now data and MC compatible at 20%
- No "loosers" politics
 - Goal is to build the best calorimeter
- R&D motivated by physics analysis
 - Working groups in each channel
- Easy to join
 - Still lot of work needed to be done

Front-End electronics

CALICE - ECAL

- Silicon Pads
 - 1x1 cm2 (~Molière Radius)
 - Analog Readout 16 bits
 - Large Dynamic Range
- Prototype used at test beams
 - 30x30 cm² planes
 - 14 layers
 - Distinction of 2 close electrons (~3cm)

CALICE - ECAL

- Silicon Pads
 - 1x1 cm² (~Molière Radius)
 - Analog Readout 16 bits
 - Large Dynamic Range
- Prototype used at test beams •
 - 30x30 cm² planes
 - 14 layers
 - Distinction of 2 close electrons (~3cm)

20-40 layers !

Detector slab

CALICE - AHCAL

HCAL & TCMT

- Scintillator tiles
 - $3x3cm^2 \rightarrow 12x12 cm^2$
 - Wavelength shifter coupled to a SiPM
- 1 m³ prototype (4.5λ)
 - 38 layers
 - ~8000 channels
 - Tail Catcher of 10λ

HCAL alone

2006 Test Beams

CIEMAT May 18th

Digital Calorimetry

- Feasibility study started on digital hadronic calorimetry
- Use number of hits insted of deposited energy
 - Electronics simple per channel (just a comparator)
 - Price to pay: higher granularity
 - 1x1 cm²
 - 40-50 sample planes
- It works on simulation
- Needed to be proved exp.
 - Construction of 1m³ prototype
 - Test beams
- Two active groups in CALICE
 - American: 30x30x30 cm³ prototype.
 - based on RPCs.
 - European: 1m³ prototype to be build for 2009
 - based on gRPCs (baseline)
 - Micromegas readout also investigated

