Searching for θ_{13} mixing angle

with reactor neutrinos

Pau Novella Garijo CIEMAT

BEYOND 2010, Cape Town

y Tecnológicas

Overview

- What's next in neutrino oscillation physics
- Reactor neutrinos in the quest for θ_{13}
- Optimizing the experiments
- Reactor attempts in the search for θ_{13}
- θ_{13} Around the corner?

In the begining...

Reactors already played a major role in v physics...

- 1956: Cowan and Reins detect reactor neutrinos
- 1990's: neutrino oscillations:

Physics Beyond the Standard Model

Reactors play a major role again!

Measuring the oscillation

Exploring the neutrino mixing

What's next?

Why reactor neutrinos?

In contrast to accelerator experiments....

$$P_{ee}(E_{\overline{\nu}_e}, L, \Delta m_{31}^2, \theta_{13}) = 1 - \sin^2(2\theta_{13}) \sin^2\left(1.27 \frac{\Delta m_{31}^2 [10^{-3} \text{ eV}^2] L[\text{km}]}{E_{\overline{\nu}_e}[\text{MeV}]}\right)$$

- No parameter correlations
- Nearly pure \overline{v}_{e} beam
- Low energy

- No matter effects
- Cheap, as source exists
- High flux and large xsection

Reactors as v source

v come from fission products...*

• v Flux depends on fuel composition:

v Flux known to only 2%

• High flux: $1 \text{GW}_{\text{th}} \sim 2 \times 10^{20}$ \overline{v}_{e} / s

Setting up the experiment

Expected oscillation signal

3 years:

Backgrounds

Goal on subtraction error: <1%

- Uncorrelated: ²³²Th and ²³⁸U
- Correlated:
 - Muon spallation: ⁹Li
 - Fast neutrons

⁹Li

232**Th**

238T T

Analyzing the data

Experimental challenges

Reactor Flux

Doped scintillator

Radio-cleanliness

Backgrounds

Systematics!

Fighting the systematics

Impact of systematics

scaling...

Optimize the analysis according to the luminosity

Integrated luminosity L (t ·G·W·y)

What we know about θ_{13}

What we know about θ_{13}

The CHOOZ experiment

• Chooz Power Plant: 2x2.45 GW

• Only far detector: 1 km

C

+

Φ+

0

>

BD

• Current experiments scale up the technology!

hep-ex/0301017

New Generation Experiments

Multi-detector setups!

Detector technology

Comparing the experiments

θ_{13} around the corner?

Global fit for 3-flavour scenario

• Preference for $\theta_{13} \neq 0$

• First hint of θ_{13} : sin²(θ_{13}) ~ 0.01-0.02

Reactors will be there in 2 years!

Summary

