# Physics and Detector at the ILC

W. Lohmann, DESY

Why a e<sup>+</sup>e<sup>-</sup> Collider Physics essentials Requirements on the Detector R&D on Subdetectors Detector Concepts Technicalities, Organisation ....

## Why e<sup>+</sup>e<sup>−</sup>

- Electrons are pointlike
- Energy known and tunable
- Polarised beams
- •Clear, fully reconstructed events



Cold (SC) Technology (Developed by the TESLA collaboration, Recommended by the ITRP in 2004)

Frequency: 5 Hz (trains) About 3000 bunches per train 300 ns between bunches



International Linear Collider

### Accelerator Design



Physics essentials

**Origin of Mass** 

Space-Time Structure

**Dark Matter** 

New particles or phenomena in the energy range 100 GeV – 1 TeV: The Terascale – the domain of the ILC! Origin of Mass

#### SM of particle physics:

Leptons and Quarks (Fermions, s=1/2) form matter

Gauge Bosons (S=1,Photon,Z,W<sup>+</sup>, Gluons) mediate Interactions

# Higgs Mechanism



#### What we know about the Higgs Boson:

From LEP, SLD, Tevatron (Precision measurements)  $m_H = 91^{+45}_{-32}$  GeV, <186 GeV @ 95% CL From LEP direct searches:  $m_H > 114$  GeV



#### What we may know in (a few) years:

LHC/Tevatron will discover a 'light' SM Higgs Boson

e.g. CMS H 
$$\rightarrow \gamma\gamma$$
  
 $\mathcal{L} = 100 \text{ fb}^{-1}$ 



#### What we expect from ILC: Understand EWSB!

#### Identification of the Higgs (Mass, Spin, Parity), Couplings





Beyond SM: more complex Higgs sector, e.g. MSSM

Two CP even states: h, H (m<sub>h</sub> < 130 GeV) One CP odd state: A Two charged states: H<sup>+-</sup>

#### Or, no Higgs Boson:



 $\Delta E_{iet} = 0.60 \sqrt{E_{iet}}$ 

 $\sigma_{\rm F}/{\rm E} = 0.6/{\rm sqrt(E)}$ 

100

80

÷ 120

100

80

60

60

#### Strong Interactions of Gauge Bosons

-Reconstruction of the W's from the measured Jet energies and directions

Separation of WW and ZZ final states! Jet energy resolution



and then search for resonances, new interactions

120

Mj1j2



#### Space-Time Structure

Extra Space Dimensions (Gravity extends to more than three Dimensions, the 'bulk'): K(aluza)K(lein) towers of states

e⁺e⁻→ f<del>f</del>



b-tagging, vertex charge

Scalar Mode: Radion, mixing with the Higgs Boson



B, c-tagging, τ -tagging



## Dark Matter

The target is to discover CDM particles, measure their mass and couplings and compare to observational cosmology



A possible scenario

## **Detector Example**



**Requirements on the Detector** 

Impact Parameter: (secondary vertices) 1/3 x SLD 1/5-10 x LEP

Momentum resolution

Jet energy resolution

1/10 × LEP

 $1/3 \times LEP$ , HERA

Hermeticity

> 5 mrad



A worldwide R&D program is launched

### **Very Forward Detectors**

 Detection of Electrons and Photons at very low angle – extend hermeticity
 Measurement of the Luminosity with precision (<10<sup>-3</sup>) using Bhabha scattering

Beamstrahlung Depositions: 20 MGy/year Rad. hard sensors e.g. Diamond/W BeamCal





R&D for ILC (DESY PRC R&D 02/01):

Instrumentation of the Very Forward Region of the ILC Detector

#### Simulation and sensor tests





Diamond response

3DUWLFOHIOXHQFH>0,3

Flux N/cm<sup>2</sup>/10ns

## Vertex Detector

SXULW







- Space Point Resolution < 4µm</li>
- Impact Parameter Resolution ( $\delta$ (IP) = 5 10/p sin<sup>3/2</sup> $\theta$ )  $\mu$ m
- Vertex Charge Measurement Transparent, < 0.1 % X<sub>0</sub> per layer Small beam pipe Radius, < 15 mm thin walled beam pipe

## **Vertex Detectors**

#### Concepts under Development:

- Charge Coupled Devices, CCD (demonstrated at SLD)
- Fine Pixel CCD, FPCCD
- DEpleted P-channel Field Effect Transistor (DEPFET)
- Monolithic Active Pixel (CMOS), MAPS
- Silicon on Insulator, SoI
- Image Sensor with In-Situ Storage (ISIS)
- Hybrid Pixel Sensors (HAPS)
- •

#### 11 technologies, 26 Groups around the world



- Full Prototype System built, tested in the Lab and Testbeam Pixel size 20 x 30 μm<sup>2</sup>, 64 x 128 pixel
- Thinning to 50 μm demonstrated
- Rad. Hardness tested to 1 Mrad (<sup>60</sup>Co)
- Readout with 100 MHz, Noise tolerable
- Low Power Consumption (5W for a five Layer Detector)







#### Prototype ladder in 2005?

#### CCD

The first Column parallel sensor and readout chip is operated (LCFI-CCD Collaboration)



#### R&D issues:

- Readout speed 50 MHz
- Full size ladders (beam test 2010)

New Technologies:

Fine Pixel CCD (Japan)
ISIS
(immune against EMI)

## Labs involved from the three Regions



Exchange of informations between the groups (phone meetings)



- •Field Cage- homogeneous E field
- •Mechanical Frame (< 3% X<sub>0</sub>)
- Novel Gas Amplification System
- •Gas Mixture
- Performance at High B –Field
   (100μm (Rφ) Resolution)

- Track reconstruction efficiency
- •Long Silicon Strip sensors (Barrel)
- •Mechanical Support (<1% X<sub>0</sub> per layer
- FE Electronics (low noise, digitisation)

### Central Tracker- TPC

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Figure_0.jpeg)

ANSALDO

![](_page_24_Picture_1.jpeg)

![](_page_25_Figure_0.jpeg)

# Point resolution, GEM

#### <sup>•</sup>2x6mm<sup>2</sup> pads.

In Desy chamber triple GEM is used

<sup>•</sup>In Victoria chamber a double GEM

• In general (also for Micromegas) the resolution is not as good as expected from simulations

Point resolutions of better than
 70 μm are reached both for
 GEMs and Micromegas.(near
 diffusion limit)

# Beam Test @ KEK

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_2.jpeg)

## $\pi 2$ beam line

Comparison of the different gas amplification techniques with the same field cage (munich TPC)

Effect of charge spread using resistive foil (important at large B)

![](_page_26_Figure_6.jpeg)

V<sub>drift</sub> (Ar+5%iso) = 4.181 +- 0.034 cm/µs Magboltz simul. : 4.173 +- 0.016

# TPC, status and next steps:

- A large international Community is engaged in TPC R&D
- Both GEMs and MICROMEGAS seem to work
- Construction of a 'Large Prototype'
- Full System Test with the 'Large Prototype' in a beam

### A Collection of ongoing R&D topics:

![](_page_27_Picture_6.jpeg)

Readout electronics (pad density) Magnetic field homogeneity

## Central Tracker - SID/SiLC

![](_page_28_Figure_1.jpeg)

# SID/SiLC

![](_page_29_Figure_1.jpeg)

A tile containing Si-strip sensors forming the cylindrical detector layers Readout by one ASIC (under development

![](_page_29_Picture_3.jpeg)

FE readout chip prototype for Long 'ladders' (.18µm UMC) 16 channel pream, shaper. ADC) Lab. Tests are promising

SiLC plans testbeam measurements with a prototype ladder in the fall of 2006

## Labs involved from the three Regions

TPC

# SID/SiLC

![](_page_30_Figure_3.jpeg)

#### FORWARD TRACKING

![](_page_31_Figure_1.jpeg)

- SIT: Silicon strips
- FTD: Silicon disks
- FTC: Straw tubes, GEMs
- Design studies in DESY/JINR

SiLC proposal for FTD

![](_page_31_Picture_7.jpeg)

# Calorimetry

'Particle' flow concept requires to identify showers of individual particles in a jet Separation of 'neutral' and 'charged' depositions Charged particles in a jet are most precisely measured in the tracker Summing up the the energy: measurement from tracking (charged), ECAL and HCAL (neutrals) : Neutral cluster

Granularity (longitudinal and transversal) (1x1 cm<sup>2</sup>)

Compactness (small X<sub>0</sub>, R<sub>M</sub>)

Mip detection (charged particle tracking)

Photon direction measurement ('imaging')

![](_page_32_Figure_6.jpeg)

![](_page_32_Figure_7.jpeg)

#### ECAL Si/W Technology

![](_page_33_Figure_1.jpeg)

#### 5 inch waver manufactred in Korea

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)

6 inch waver manufactred in US

BNL/SLAC/Oregon •5 mm pads  $(1/2 R_{M})$ • Each 6 inch waver is readout by one chip •Electronics under way

Test beam in 2005

#### Testbeam measurements: DESY, CERN

#### Univs. From Korea

![](_page_34_Figure_2.jpeg)

First real test versus the Particle Flow Algorithm, two electrons close together

![](_page_34_Figure_4.jpeg)

![](_page_34_Picture_5.jpeg)

#### ECAL Other Technologies

![](_page_35_Figure_1.jpeg)

HCAL – Analog or Digital

Analog: Steel-Scintillator Sandwich with SiPM readout

## Sensors: Large area tile layers

equipped with WLS fibres and SiPMs

![](_page_36_Picture_4.jpeg)

![](_page_36_Figure_5.jpeg)

#### PM and SiPM Resolution

![](_page_36_Figure_7.jpeg)

Analysis of SiPM and PM already presented.

MC fits data within 5% level

#### 1 m<sup>3</sup> Tile HCAL prototype

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_0.jpeg)

sensor, pad readout

High Voltage (KV)

## Labs involved from the three Regions

![](_page_39_Figure_1.jpeg)

- CALICE includes institutes from all regions
- N.A. groups and CALICE plan a joint testbeam program at FNAL

## Status in R&D

## The nice things:

Lots of activities in all subdetectors
Simulations to optimise the design of all components are ongoing
Mechanics design studies under way
Readout concepts are designed and under test
Testbeam studies are done for many sensors, but

not yet all

•A few prototype detectors started studies with testbeams

## Status in R&D

The challenges left:

- There are essential parameters to be better understood
  Testbeam studies must be extended to all sensor
  - types
- Testbeam studies for prototypes of all subdetectors are the Major Topic for the next years-
- the only way of proof of the performance goals
- Testbeam results are input for refined simulationsimproved designs or redesigns
- Prototypes and testbeams need a new level of funding
- •I am sure I forgot something

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

**B** =

![](_page_43_Figure_0.jpeg)

### **Interaction Region**

![](_page_44_Figure_1.jpeg)

Full optics for all beamlines, 2 mRad and 20 mRad designs explored in detail, up/downstream instrumentation present for both IRs.

#### Two Detectors, because:

- Confirmation and redundancy
- Complementary Collider options
- Competition
- Efficiency, reliability
- Historical lessons

## The Snowmass adventure

More than 750 physicists from around the world came to work together

A 'virtual' Lab, GDE is formed to manage the world-wide effort (Accelerator, Detector, Physics ..) Several working groups are formed, People from all parts of the world overtook clear responsibilities

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

The Lab (GDE) has a director, Berry Barish (and regional directors for Europe, NA and Asia)

# **The GDE Plan and Schedule**

![](_page_46_Figure_1.jpeg)

# Detector R&D

![](_page_47_Figure_1.jpeg)

# ILC-LHC

The Success of LHC will be a big boost for our field
We are going ahead aggressively ahead to elaborate the case for the ILC, following our schedule
Once we have collisions at the ILC an exciting Synergy with LHC will realized

#### Historic lesson:

| Discovery               | Collider                                | $L_{peak}$                                                         | 1st collisions                   | Observation                      | (Expt.)                 | Time                   |
|-------------------------|-----------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------------------------|-------------------------|------------------------|
|                         |                                         | $(cm^{-2}s^{-1})$                                                  |                                  |                                  |                         | lag                    |
| $W^{\pm}$ $Z^{0}$ $top$ | CERN SppS<br>CERN SppS<br>FNAL Tevatron | $1.7 \times 10^{29}$<br>$1.7 \times 10^{29}$<br>$2 \times 10^{30}$ | Aug 1981<br>Aug 1981<br>Feb 1987 | Jan 1983<br>Jun 1983<br>Mar 1995 | (UA1)<br>(UA1)<br>(CDF) | 1.5 yr<br>2 yr<br>8 yr |
| Higgs                   | CERN LHC                                | $10^{33} - 10^{34}$                                                |                                  |                                  |                         |                        |

ILC has a compelling physics case

The accelerator will be SC (great success for the TESLA collaboration)

The Community made an important step to an 'International Organisation'

The R&D program for the ILC detector is exciting (Don't miss it)

![](_page_50_Picture_0.jpeg)

# **Time Schedule**

![](_page_51_Figure_1.jpeg)

Taken from Y. Sugimoto

# **Energy Frontiere**

![](_page_52_Figure_1.jpeg)

# The Recommendation

 We recommend that the linear collider be based on superconducting rf technology

![](_page_53_Picture_2.jpeg)

- This recommendation is made with the understanding that we are recommending a technology, not a design. We expect the final design to be developed by a team drawn from the combined warm and cold linear collider communities, taking full advantage of the experience and expertise of both (from the Executive Summary).
- The superconducting technology has several very nice features for application to a linear collider. They follow in part from the low rf frequency.

![](_page_54_Figure_0.jpeg)

#### Development of large area GEM foils (Arlington)

#### Promising results from Simulations

![](_page_54_Figure_3.jpeg)

![](_page_54_Figure_4.jpeg)