

First results on the θ_{13} mixing angle with the Double Chooz reactor experiment

> Inés Gil Botella Basic Research Department 15 December 2011

GOBIERNO DE ESPAÑA E INNOVACIÓN

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Overview

- Neutrino oscillations status
 - The search for the θ_{13} mixing angle
- Neutrino oscillations at nuclear reactors
 - Neutrino detection and backgrounds
- The Double Chooz experimental setup
- CIEMAT contribution
- Physics results
 - Detector performance
 - Neutrino selection and backgrounds
 - Oscillation analysis
- Prospects
- Conclusions

Neutrino oscillations status

4

Neutrino oscillations

- Quantum mechanical phenomenon
- Flavor transitions due to:
 - Finite mass
 - Neutrino mixing
- For two families: $P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2(2\theta) \sin^2(\theta)$

Global analysis of oscillation data

			\sim	
parameter	best fit	2σ	3σ	
$\Delta m_{21}^2 \left[10^{-5} \mathrm{eV}^2 \right]$	$7.65^{+0.23}_{-0.20}$	7.25 - 8.11	7.05-8.34	130
$ \Delta m^2_{31} [10^{-3} \mathrm{eV}^2]$	$2.40^{+0.12}_{-0.11}$	2.18 - 2.64	2.07 - 2.75	et al.
$\sin^2 \theta_{12}$	$0.304\substack{+0.022\\-0.016}$	0.27 - 0.35	0.25 - 0.37	etz (Phys
$\sin^2 \theta_{23}$	$0.50\substack{+0.07\\-0.06}$	0.39 - 0.63	0.36 - 0.67	ch.v
$\sin^2 \theta_{13}$	$0.01\substack{+0.016\\-0.011}$	≤ 0.040	≤ 0.056	T. S Ne

 $\theta_{13}, \delta_{CP}, \text{ sign } \Delta m_{31}^2, \theta_{23} \text{ maximal}??$

008

The θ_{13} mixing angle $\delta m^2 (eV^2)$ CHOOZ Hints for $\theta_{13} > 0$ $\sin^2 \theta_{13} = 0.01 - 0.02 (1\sigma)$ $R = 1.01 \pm 2.8\%$ (stat) Atm & LBL & CHOOZ G.L. FOBILET al., aXIV.0905.3549 M.C. GONTAILEZ et al. arXIV. 1001.4524 M.C. GONTAILEZ et al. arXIV. 1001.4524 G.L. FOBIlet al., artist and a strain and a ± 2.7%(syst) Solar & KamLAND ALL v oscillation data 2008 10 $v_e \rightarrow v_x$ ALL + MINOS 200 0.03 0.01 0.02 0.04 0.05 0 $\sin^2\theta_{13}$ 5 90% CL (2 dof) 10 **GLOBAL** eV²1 Best global limit on θ_{13} 95% CL [10⁻³ M. Mezzeto & T. Schwetz SK+K2K+MINOS arXiv:1003.5800 Δm^2_{31} Global (90% CL) 2 10 CHOO $\sin^2 \theta_{13} \le 0.031$ SOL+KAML +CHOOZ 90% C 1 $sin^{2}(2\theta_{13}) < 0.12 - 0.2$ 10⁻² 10^{-1} (90% C.L) $\sin^2\!\theta_{13}$ 10 0.1 0 0.2 0.3 0.4 0.5 0.6 0.9 0.7 0.8M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374 sin⁴(20)

6

Two approaches for measuring θ_{13}

ACCELERATOR

- Appearance experiments
- $P(v_{\mu} \rightarrow v_{e})$ depends on $sin^{2}(2\theta_{13})$, $sin^{2}(\theta_{23})$, $sign(\Delta m^{2}_{31})$, δ_{CP} phase
 - Parameter degeneracies and correlations
 - Matter effects sensitive
- Possible measurement of CP and $sign(\Delta m_{31}^2)$
- EXP. CHALLENGES: v beam intensity, v beam flavor contamination, v flux properties, v-N interactions

REACTOR

- Disappearance experiments
- $P(\overline{v}_e \rightarrow \overline{v}_e)$ depends on $sin^2(2\theta_{13})$
- Unambiguous determination of θ₁₃
 - no dependence on δ_{CP}
 - no dependence on mass hierarchy
 - weak dependence on Δm_{12}^2
- Resolve θ₂₃ degeneracy combined with accelerator experiments
- EXP. CHALLENGES: backgrounds, systematic uncertainties

Both type of experiments provide independent and complementary information on θ_{13}

Evolution of the 3σ discovery and sensitivity

Neutrino oscillations at nuclear reactors 9

Nuclear reactors

- Electron antineutrinos emitted through decays of fission products of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- Nuclear reactors: $1 \text{ GW}_{\text{th}} \approx 2 \times 10^{20} \overline{\text{v/s}}$
- Neutrino luminosity: $N_{ar{
 u}}=\gamma(1+k)P_{
 m th}$
 - γ: reactor constant
 - k: fuel evolution correction up to 10%
- ~200 MeV/fission is released
- ~6 antineutrinos/fission

Neutrino oscillations at nuclear reactors

Antineutrino detection

 $\bar{\nu_{e}}$ detection: inverse beta decay

 $\overline{v}_{e} + p \rightarrow n + e^{+}$ $n + Gd \rightarrow 8 \text{ MeV } \gamma$

- Prompt signal: e⁺ kinetic energy + photons from e⁺ annihilation:
 - $E_{vis} \approx E_v (m_n m_p) + m_e \approx E_v 0.8 \text{ MeV}$
- Delayed signal: photons from n capture
 - on H : Δt ~200 µs, E~2 MeV
 - on dedicated nuclei (Gd): Δt ~30 μs, E ~8 MeV

Main selection observables (CHOOZ data plots)

In addition in CHOOZ: fiducial cut, spatial distance between e⁺ and n, neutron multiplicity

The Double Chooz experimental setup

Double Chooz collaboration

Ardennes, France

Reactor measurement principle

- 2 "identical" detectors
- Rate comparison
- Spectral distortion
- Limit:
 - Systematics
 - Backgrounds

Detector design

Calibration glove box

- Outer veto: plastic scintillator strips
- Shielding: 15 cm steel

Inner veto:

 90 m³ of liquid scintillator & 78 8" PMTs in a steel vessel (10 mm)

Buffer:

 110 m³ of non scintillating mineral oil & 390 10" PMTs in a stainless steel vessel (3 mm)

Gamma-catcher:

22.3 m³ of liquid scintillator in an acrylic vessel (12 mm)

Target:

 10.3 m³ of liquid scintillator doped with 1 g/L of Gd in an acrylic vessel (8 mm)

Expected backgrounds

- Will be reduced with respect to CHOOZ
- Target volume protected by several concentric layers
- Radiopurity requirements for detector materials and during installation
- Efficient muon tagging by inner and outer veto

Expected background

Accidental coincidences:

- Prompt = radioactivity from materials, rock
- Delayed = neutron from cosmic muon captured on Gd
- Proposal : 2.0 ± 0.9 / day

Expected background

- Correlated fast neutrons:
 - μ-induced
 - Prompt = recoil proton
 - Delayed = neutron capture on Gd
 - Proposal : 0.2 ± 0.2 / day

Expected background

Correlated ⁹Li and ⁸He:

- Produced by µ-induced spallation processes
- β-n emitters, perfectly mimic the v signal.
- Long life time ~250 ms, difficult to veto completely because of excessive dead time
- Proposal : 1.4 ± 0.5 / day

Far detector construction (2008-2010)

Inner veto PMTs installed

24

Buffer PMTs installed

-

He He

i for

Installation of acrylic vessels

Acrylic vessels and PMTs installed

Buffer PMT volume closed

Steel shield installed

Milestones

- May 2008 October 2010: far detector construction
- December 2010: far detector filling completed
- April 2011: far detector commissioned
- April 2011: start physics data with far detector
- July 2011: Outer veto commissioned
- July 2011: Glove box installed
- August 2011: First campaign of calibration
- November 2011: First release of physics results
- June 2012: Expected delivery of near lab
- End 2012: Expected near detector completion
- Beg. 2013: Start data taking with far and near detectors

Near detector lab civil construction

- Started April 2011
- Delivery June 2012
- Detector construction until end 2012
- Overburden: 120 mwe

CIEMAT contribution

Experimental neutrino group at CIEMAT

RESEARCHERS		
I. Gil Botella	(I. P.) Permanent	
M. Cerrada	Permanent	
C. Palomares	Permanent	
P. Novella	Postdoc	
R. Santorelli	Postdoc	
J. Crespo	PhD student	
M. López	PhD student	
ENGINEERS		
E. Calvo	Mechanical E.	
S. Jiménez	Electronic E.	
A. Verdugo	Electronic E.	
TECHNICAL STAFF		
J.M. Ahijado	Permanent	
F. García	Permanent	
CIEMAT mechanical workshop		

Spanish contributions to Double Chooz

DETECTOR MECHANICS

- Design and construction of special tools for acrylics installation
- Design, construction and assembly of PMT mechanical supports
- Installation of PMTs in the detectors

PHOTODETECTION SYSTEM

- PMT functionality tests
- PMT characterization under magnetic field
- Design, tests, production and assembly of PMT magnetic shields
- PMT light noise characterization

COMMON FUND

- Filling system
- Buffer and veto liquids
- Safety systems
- Running costs

ELECTRONICS

• Design, tests, production and installation of PMT HV splitters

ONLINE SYSTEM

• DAQ Event Builder development

SIMULATION, DATA RECONSTR. AND PHYSICS ANALYSIS

- Detector simulation software
- Data reconstruction algorithms
- Background simulation and analysis
- Neutrino selection
- Analysis tools for sys. and sensit. estimation
- Coordination of the European cluster
Mechanical tools for acrylics installation

- 3 mechanical tools for construction and transportation of target acrylic vessels
- 1 mechanical tools for construction, transportation and installation of gamma catcher vessel
- Tools designed in collaboration with Saclay
- Manufactured at CIEMAT workshop in 2008
- Successful acrylic vessel installation at Chooz in 2009

Successful installation at Chooz

PMT magnetic characterization & magnetic shields

- Hamamatsu 10" R7081 tests at CIEMAT:
 - Main characteristics
 - Response under low B-field (for the first time)
 - Uniformity measurements
- Design and production of 800 magnetic shields keeping >95% of signal for B-fields up to 1G in any direction
- Quality tests of final production shields before their assembly
 Qu
- 2 NIM papers published

Relative response

ore Quality tests of shields

39

PMT mechanics: design and fabrication

- Complete design of PMT mechanical supports for Double Chooz
- Mechanical and pressure tests at CIEMAT
- Design and production of fixing system to the buffer wall
- Production of all mechanical pieces (~10,000 pieces) at CIEMAT workshop
 - 8 technicians during 8 months (only for FD production)
 - Production also finished for near detector
- Quality control, cleanliness procedure and thermal treatment of acrylics, nylon and stainless steel components at CIEMAT by our technicians (~8 months)

Acrylics (18 pieces per PMT)

PMT mechanics: distribution and fixing system to the buffer

PMT mechanics: assembly

- 7 weeks of work for far detector in MPIK Heidelberg
- 4 technicians from CIEMAT
- Preparation of special tools
- Clean room environment
- 3 CIEMAT technicians currently assembling near detector PMTs

PMT HV splitters

- Design, tests and manufacturing of 480 HV splitters for far detector at CIEMAT labs
 - 10 modules 48 HV splitters each
- HV cables manufactured and tested at CIEMAT
- Successful installation at Chooz in 2009
- Currently working in the production for near detector

PMT installation inside the pit

- Detailed procedure (phase I: bottom and wall, phase II: lid)
- Performed during 2 months by a team of 10 people (2 technicians from CIEMAT inside the pit + 1 technician for cabling + our engineers)

PMT cabling

 Cabling strategy inside & outside the detector designed by our engineers and technicians

PMT installation on the lid

 One more week for installing 60 PMTs on the lid

First physics results

Presented in LowNu 2011 Korea

November 2011

Detector performance

Data taking efficiency

- Taking physics data since
 April, 13th 2011
- Averaged data taking efficiency: 86.2 %
- 77.5 % of physics data efficiency
- 10% of calibration runs
- Trigger rate ~120 Hz
- Trigger threshold < 0.6 MeV</p>

Integrated data taking

- Integrated data taking time for physics (till 4th Nov): 159.6 days
- Integrated data taking time analyzed: 100 days
- Run time: 101.5234 days (to Sept 18th)
- Live-time: 96.823 days (1ms muon veto)

Detector calibration

- Multiple calibration methods:
 - Light injection in ID and IV
 - Monitor stability of readout (timing, gain) and scintillator
 - Radioactive sources deployment
 - Across most energy scale
- Sources deployed in Z axis in target and guide tube in GC:
 - ⁶⁸Ge, ¹³⁷Cs, ⁶⁰Co, ²⁵²Cf (n source)
 - Linearity and energy calibration
 - Z-correction
 - Neutron detection efficiency

Charge correction

 Calibrate non-linearity due to single photoelectron efficiency, charge reconstruction and electronics effects

⁶⁸Ge Detector Center X=0mm, Y=0mm, Z=0mm

⁶⁸Ge Guide Tube X=0mm, Y=1433.9mm, Z=0mm

Energy calibration

- ⁶⁸Ge at the center of the target
 - Positron source
 - The spectrum is well modeled
 - Verification of the energy threshold

⁶⁸Ge in the guide tube

 Correction work also in the Gamma Catcher

Z correction

- Calibration of the Z-bias
 - Residuals in the correction will be included in the detector covariance matrix

Muon detection

- Rate of muons in IV: 46 Hz
- Rate of muons in ID: 13 Hz
- Stopping muons can also be tagged and the Michel electron is clearly seen
- Michel electrons: $\tau = 2.25 \pm 0.13 \,\mu s$ (stat error only)

Michel electron timing distribution

57

Muon correlated physics

Preliminary energy reconstruction only

Muon induced neutron capture in H energy window (1.9 – 2.5 MeV) Rate < 0.1 Hz stable for 120 days

Neutrino selection

$$\bar{\nu}_e + p \longrightarrow e^+ + n$$

Muon veto and light noise rejection

Muon veto

1 ms veto after each muon (large energy deposition in IV or ID)

Instrumental PMT light noise rejection

- 15 PMTs turned off (large emitters)
- Q_{max}/Q_{tot}: emitter PMT sees its own light
- RMS(T_{start}): light spread in time across all PMTs

Neutrino selection criteria

- Prompt signal:
 - $Q_{max}/Q_{tot} < 0.09 \& RMS(T_{start}) < 40 ns$
 - 0.7 < E < 12 MeV
- Delayed signal:
 - $Q_{max}/Q_{tot} < 0.06 \& RMS(T_{start}) < 40 \text{ ns}$
 - 6 < E < 12 MeV</p>
- Coincidence:
 - Time coincidence: $2 < \Delta t < 100 \mu s$
 - No space coincidence cut

Multiplicity:

- No events within 100 μs before the prompt
- Only one delayed event allowed within 400 µs after the prompt

Trigger efficiency

Delayed energy spectrum

 Fiducial volume is defined by the target

Fraction of Gd capture

²⁵²Cf Data Delayed Signal

- Calibration with a ²⁵²Cf source in the central target region
 - Deployment along the Zaxis (7 positions)
 - Compute Gd/(H+Gd) capture rate
- 2% correction between data & MC
- Gd capture efficiency is 86.0 ± 0.6%

Delayed event energy containment

Averaged (Data-MC)/Data relative difference: $\leq 0.6\%$

Time coincidence

- keV neutrons thermalize within a few μs
- Neutrons are captured on Gd with $\tau \sim 27 \ \mu s$

Prompt vs delayed energy

Reconstructed vertex positions

67

Prompt-delayed distance

Only signal MC

No need for ∆r cut as designed in the proposal

Neutrino candidate rate

Backgrounds

Accidental BG

Singles: rate & spectrum

- [0.7,12] MeV
- DC proposal: 10 Hz
Accidental background

Accidental Background Prompt Event Visible Energy

- Prompt energy in off-time window [1,100] ms away from neutrino candidates
- Very low rate: R = (0.332 ± 0.004) day⁻¹
 - Dominant background for < 2 MeV (oscillation signal)
 - Stable in time
- Spectrum dominated by singles (natural radioactivity)

Cosmogenic BG: ⁹Li & ⁸He

Cosmogenic BG: ⁹Li & ⁸He

- ⁹Li selection:
 - Production measured statistically
 - Search for triple delayed coincidence between showering muon and neutrino-like coincidence
- Δt between showering muon and prompt event is given by the ⁹Lilike life time (257 ms)
- Rate: (2.3 ± 1.2) day⁻¹
- Energy spectrum from KamLAND via MC

Visible Energy (MeV)

Fast-neutron BG

Fast-neutron BG

- Neutrino analysis with prompt energy extended up to 30 MeV
- Two main sources identified:
 - Fast-n: scatter in periphery of detector (top/sides predominantly)
 - Delay is captured on Gd ($\tau \sim 27 \ \mu s$)
 - Stopping muon: sneaking through the chimney
 - Delay is Michel-e upon muon decay @ rest (Δt ~2.2 μs)
- Rate: extrapolation from high to low energies
 - Rate = (0.7 ± 0.5) day⁻¹
- Spectrum: flat hypothesis with uncertainty due to the stopping muon shape

Summary of backgrounds

Туре	R (day-1)	δR (day⁻¹)	δR/R	R/total (42.6 day ^{_1})	Spectrum
Candidates	42.6	0.7	0.016		
Accidental	0.332	0.004	0.012	0.008	Measured
Li/He	2.3	1.2	0.522	0.054	From MC
Fast-n	0.7	0.5	0.714	0.016	Flat + shape uncertainty

4121 neutrino candidates328 expected background eventsin 96.82 days

Both reactors OFF for 1 day

- Reactor 1 was OFF for 2 months (new data not analyzed yet)
- Reactor 2 was OFF for 1 day

 ν -spectrum at residual power

Both reactors OFF: Event I³⁰⁰⁰₂₀₀₀

⁹Li event candidate

- Prompt event
 - Inner Detector energy: 9.8 MeV
- Delayed event
 - Inner Detector energy 8.0 MeV
- Coincidence characteristics
 - Distance 16.4 cm
 - Δ†: 4 μs
- Muon(> 600 MeV)
 - Inner Detector energy 739 MeV
 - Distance to prompt: 15.4 cm
 - Δt to prompt: 201 ms

Both reactors OFF: Event I

⁹Li event candidate

- Prompt event
 - Inner Detector energy: 4.8 MeV
- Delayed event
 - Inner Detector energy 8.6 MeV
- Coincidence characteristics
 - Distance 27.9 cm
 - Δ†: 26 μs
- Muon(> 600 MeV)
 - Inner Detector energy 627 MeV
 - Distance to prompt: 30.8 cm
 - Δt to prompt: 241 ms

- Prompt event
- Delayed event
- Coincidence characteristics
 - Distance 79 cm
 - Δ†: 2.2 μs
- Muon(> 600 MeV)

x [mm]

Oscillation analysis

Blinded analysis

- The analysis up to here was blinded
 - No access to the reactor power and fission rate data
- Only a few elected people had reactor information to develop the corresponding simulations and provide the expected neutrino spectrum

Reactor neutrino flux calculation

Based on Bugey 4 measurement with correction to DC

Reactor information and simulations

- Monitoring P_{th} every minute ($\delta P_{th}/P_{th} = 0.46\%$)
- Reactor core evolution
 - Complete core simulation (EdF inputs, validation with independent calculations)
 - Error budget based on uncertainty on reactor parameters, code comparison, nuclear database inputs...

Predicted neutrino spectrum

Predicted neutrino rate at FD P. Huber, Phys. Rev. C84 (2011) 024617 Expected v per hour fission⁻¹.Mev⁻¹) 0 1 1 241Pu 1.4 238U 1.2 239Pu 235U 1.0 0.8 0.6 10⁻² 0.4 Core B2 Core B1 0.2 **Double Chooz preliminary** 0.0 L 60 80 160 20 40 100 120 140 10⁻³ **Double Chooz preliminary** Day after April 13, 2011

New reference neutrino spectrum

Recent re-evaluations of fissile isotopes by: Th. A. Mueller et al, Phys.Rev. C83 (2011) 054615

5

6

7

E_v (MeV)

8

3

2

Total relative error on the predicted neutrino rate

- Bugey4 measurement suppresses sensitivity to reference spectra (σ_{per fission})
- Accurate reactor simulation with MURE keep contribution of the uncertainty on fission rates low
- TOTAL = 1.7% of total error

Predicted number of neutrinos = 5334.7 ± 93

(4121 candidates observed)

89

Observed vs expected rate

- Background not subtracted
- Reactor OFF-OFF point:
 - 2 candidates
- Background can be measured from fit
 - Without reactor OFF-OFF: BG = 5.0 ± 2.3 day⁻¹
 - With reactor OFF-OFF: BG = 3.2 ± 1.3 day⁻¹
- Estimated background from analysis: 3.33 ± 1.32 day⁻¹
- Slope:
 - $sin^2(2\theta_{13})$ 0.093 ± 0.065

Fit strategy

$$\chi^{2} = \left(N_{i} - \left(\sum_{R}^{\text{Reactors}} N_{i}^{\nu,R} + \sum_{b} N_{i}^{b}(P_{b})\right)\right) \times \left(M_{ij}^{\text{signal}} + M_{ij}^{\text{detector}} + M_{ij}^{\text{stat}} + \sum_{b}^{\text{bkgnds.}} M_{ij}^{b}\right)^{-1}$$

$$\times \left(N_{j} - \left(\sum_{R}^{\text{Reactors}} N_{j}^{\nu,R} + \sum_{b} N_{j}^{b}(P_{b})\right)\right)^{\text{T}}$$
Covariance matrices
$$+ \sum_{R}^{\text{Reactors}} \frac{(P_{R})^{2}}{\sigma_{R}^{2}}$$

$$+ \sum_{b}^{\text{bkgnds.}} \frac{(P_{b})^{2}}{\sigma_{b}^{2}}$$
Pull terms (rate uncertainties)

- M^{signal}: signal covariance matrix (uncertainties on neutrino signal from reactor, conversion to reconstructed positron energy)
- M^{detector}: efficiencies uncertainties, data/MC discrepancy, energy scale uncertainty and other detector effects
- M^{stat}: statistical covariance matrix
- M^{backg}: relative spectral uncertainties

.

Efficiencies and MC correction

SOURCE	VALUE	UNCERTAINTY
DETECTION EFFICIENCY		
Target free H	100 %	± 0.3 %
Prompt efficiency	100 %	Negligible
Delay efficiency	86.0 %	± 0.6 %
∆t cut	96.5 %	± 0.5 %
ΔE (delay) cut	94.5 %	± 0.6 %
MC CORRECTION		
Muon veto deadtime	95.5 %	Negligible
Multiplicity	99.5 %	Negligible
Gd to H fraction	98.0%	± 0.6 %
Spill in/out	99.3 %	± 0.4 %

Rate and shape oscillation analysis

- Rate only:
 - sin²(2θ₁₃) = 0.096 ± 0.029 (stat) ± 0.073 (sys)
- Shape only:
 - $\sin^2(2\theta_{13}) = 0.044 \pm 0.157$
- Rate + shape:
 - sin²(2θ₁₃) = 0.085 ± 0.029 (stat) ± 0.042 (sys) at 68% CL
 - No oscillation excluded at 92.9%

Total uncertainties

UNCERTAINTY SOURCE	VARIANCE
Statistical	1.56 %
Reactor flux	1.71 %
Detection efficiency	1.10 %
Detector response	1.20 %
Accidental backg	0.01 %
Fast neutron backg	1.14 %
Lithium-9 backg	2.73 %
Systematic total	3.78 %

Double Chooz+T2K combination

Combination DC+T2K +MINOS

Combination DC+T2K +CHOOZ

Prospects

Statistical and systematic errors

CHOOZ: $N_{obs} / N_{exp} = 1.01 \pm 2.8\%$ (stat.) $\pm 2.7\%$ (sys.)

	СНООΖ	Double Chooz
Target volume	5.55 m ³	10.3 m ³
Data taking period	few months	3-5 years
Event rate	2700	far: 20.000/y near: 150.000/y
Statistical error	2.8 %	0.5 %
	СНООΖ	Double Chooz
Reactor uncertainties (v flux and reactor power)	2.1 %	< 0.1 %
Number of protons	0.8 %	< 0.2 %
Detector efficiency	1.5%	< 0.5 %
Systematic error	2.7%	< 0.5 %

Double Chooz sensitivity

- Normalization to Bugey-4 cross section (with FD) to be independent from the flux prediction
- Phase I (FD only): 10 x more statistics than CHOOZ
 - Limited by rate and shape reactor flux uncertainties (2.8% total)
- Phase II (FD + ND): more robust
 - Limited by inter-detector normalization systematic uncertainties (0.6 %)
- With 3 years of data taking (2 detectors):
 - the sensitivity of the experiment is sin² (2θ₁₃) < 0.03 at 90% CL and
 - the discovery potential is sin²(2θ₁₃) > 0.05 at 3σ C.L.

100

Conclusions

- Double Chooz started physics data taking since April 2011
 - Measuring neutrinos with low backgrounds
- The first preliminary data release at LowNu conference (November, 2011)
 - Oscillation analysis (rate + shape): sin²(2θ₁₃) = 0.085 ± 0.029 ± 0.042 (68% CL)
 - No-oscillation excluded at 92.1% CL
- First publication is almost ready
- Data taking continues without stop
- Near detector operational by early 2013
- Great prospects towards very precise θ_{13} measurement
 - Final sensitivity sin²(2θ₁₃) < 0.03 (90% CL)</p>

More DC information on "The Big Bang Theory" show

