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The current standard model of cosmology, LCDM, is based on 
 

- General Relativity 

- The Cosmological Principle 

- Particle Physics in the early universe, including inflation 
 

 
The cosmological principle :  
The universe is HOMOGENEOUS and ISOTROPIC   

Peacock & Dodds 
(1994) 
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Introduction 



Cosmological principle               Universal time coordinate 
 
Galaxies at rest in COMOVING COORDINATES 
 
Their collective motion is due to the expansion of space, described by 
the scale factor a(t); a0=1 (now) 
 
The curvature has to be constant everywhere 
 

This leads to the LFRW (Lemaitre-Friedmann-

Robertson-Walker)  metric for the universe: 

a: scale factor of the universe 
R: Radius of curvature (constant) 
t: proper time 
r: comoving distance 
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LFRW 

GEOMETRIES 

COMOVING 

COORDINATES 
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Comoving 
coordinates do 
expand with the 
universe 

3 possible geometries for the 
LFRW metric 



Introducing the LFRW metric into the Einstein´s field equations of GR, 
we obtain the Friedmann equations: 

G: Newton´s constant 
ρ:  energy density 
p: pressure 

We need to specify a equation of state for each component of the 
universe to solve for a(t).  
The universe is filled with a homogeneus and isotropic fluid       
 Ideal fluid                   Tmn = diag(-ρ,p,p,p) 
Barotropic fluids, p=wρ 
- matter (ordinary or dark): p=0, w=0 
- radiation: p=r/3, w=1/3 
- cosmological constant: p=-ρ,  w=-1 
- dark energy: w=w(t)<-1/3 (to obtain an accelerated expansion)  
E. Sánchez TAE 2012 6 



REDSHIFT 
The light from distant sources is observed on Earth redder 

than it was emitted due to the expansion of the universe 

Redshift of 

the source 

The redshift is a 

measurement of the 

scale of the universe at 

the time of the emission 
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Redshift is NOT Doppler effect 



DISTANCES 
The comoving distance to a source at redshift z can be computed as: 

Several distances can be measured observationally: 
 
– Luminosity distance:  “Standard candle” with luminosity L 
dL is such that the measured flux is Φ = L / 4πdL

2 

dL(z) = r(z) (1+z) (flat universe) 
 
– Angular diameter distance: “Standard ruler” with length l 
dA is such that the measured angle subtended by l is Δθ = l / dA 

 dA(z) = r(z) / (1+z) (flat universe) 
 

So by having a collection of either standard candles or standard rulers at 

different known redshifts, we will have many integrals of 1/H(z), from where 

one can reconstruct  Ω
M
, w, etc. 
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astro-ph/9905116 astro-ph/9905116 
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Growth of structure 
The cosmological model is able to account for the observed structure in the 
universe: 
- Structure grows due only to gravity (and dark energy), from  initially small 
perturbations 
- Cold Dark matter 
- Initial power spectrum of density perturbations nearly scale invariant 
(inflation) 

The distribution of fluctuations 

depends on primordial 

perturbations and also on the 

composition of the universe 

 

COLD DARK MATTER → Hierarchical 
structure formation: Small 

structures from first 
E. Sánchez TAE 2012 11 Frieman, Turner & Huterer, 2008 
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How do yo discriminate 

among models? 

Correlation Function 
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Different cosmological models predict  different large scale structure 

Power Spectrum 



From CMB  ΩTOT ~1 
(Universe is FLAT)  

From BBN + CMB  ΩM ~ 0.04 
 Most of the universe is 
non-baryonic 

LSS (galaxy surveys) + 
DYNAMICS (rotation curves of 
galaxies, cluster masses, 
gravitational lensing)  DARK 
MATTER!!!!  ; ΩDM~ 0.22 

Supernovae Ia  DARK 
ENERGY!!! ; ΩDE ~ 0.76 

Large amount of observational evidence 

 Large scale homogeneity 
 Hubble diagram 
 Abundances of light elements 
 Existence of CMB 
 Fluctuations of CMB 
 LSS 
 Age of stars 
 Evolution of galaxies 
 Time dilation in SN brightness curves 
 Temperature vs redshift (Tolman test) 
 Sunyaev-Zel´dovich effect 
 Integrated sachs-Wolf effect 
 Dark matter (rotation/dispersion velocity) 
 Dark energy (accelerated expansion) 
 Consistency 
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Cosmology requires new physics beyond standard model of particle physics to 

understand dark matter, dark energy and inflation. 

The evidence of dark energy is twofold: 

Accelerated expansion of the universe, measured from SNIa 

 The universe is flat (from CMB) and its matter content is around 24% (from 

LSS, BAO), ergo, “something else” must provide the missing mass-energy. 

Remarkably, the same “dark energy” can also explain the accelerated 

expansion. 
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96% of the matter-energy content of the universe remains 

unexplained 



E. Sánchez TAE 2012 15 

Parameter Current Best Value 

Hubble expansion rate h 0.710(25) WMAP7 

critical density ρc 1.053 75(13)× 10−5 h2 (GeV/c2) cm−3 

baryon density Ωb 0.045(3) 

pressureless matter density ΩM 0.27±0.03 

dark energy density (LCDM) ΩΛ 0.73(3) 

dark energy  EoS parameter w -0.98 ± 0.05 (WMAP7+BAO+H0) 

CMB radiation density Ωγ 4.75(23) x 10-5 

neutrino density Ων 0.0009 <  Ων < 0.048 

total energy density  Ωtot 1.002 ± 0.011 (WMAP7+BAO+H0) 

scalar spectral index nS 0.963(14) 

age of the Universe t0 13.75 ± 0.13 Gyr 

Cosmological Parameters (from PDG) 
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How do we know that? Observational Cosmology 

We have already seen the abundances of primordial elements 
and the search for dark matter. 

Now we will review the other pillars of cosmology: The 
Cosmic Microwave Background (CMB) and the Dark energy.  
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The Cosmic Microwave Background (CMB) 
Thermal radiation from the 
formation of atoms ~380000 
years after the big bang, or …. 
13600  million years ago!!! (if 
the universe was a person 80 
years old, CMB is a photograph 
when that person was 13 
months old) 

Discovered in 1965 
In 1992 it was discovered that CMB 

is not fully uniform. Its small 
anisotropies are the seeds of all 

the structures we see nowadays in 
the universe 

The most precise measurements of 
the cosmological parameters come 

from CMB 
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Discovery of CMB: Horn antenna to detect radio waves 

Arno Penzias 
and Robert 
Wilson of Bell 
Labs  (1965) 
 
Low and 
steady noise  
persisted in 
the receiver 
 
Accidental 
discovery 
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National Historic Landmark  (1988) 
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Slide  from 
Ned  Wright 

T = 2.72548 ± 0.00057 K 
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β = -0.007 ± 0.027 

CMB Temperature . vs . Redshift 

COBE 

SZ Effect 

CO Molecule lines 

C atom lines 

arXiv:1012.3164 [astro-ph] 
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The COBE Satellite 
Launched in 
1989, 4 years 
mission 
 
High precision 
measurement  
of  the CMB 
temperature 
(1990) 
 
First detection 
of the tiny CMB 
anisotropies 
(1992) 
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FIRAS instrument : Temperature of the CMB  
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DMR instrument : Fluctuations of the CMB  
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Slide  from 
Ned  Wright 
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T  = 3.355 mK 

T  = 18 µK 

Dipole Anisotropy  due to earth 
movement 

Solar System: v  =  368 ± 2 km/s 
Towards  the constellation of 

Leo 
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The most precise 
measurements up to 
date in cosmology, 
which have placed  

it on solid 
observational basis 

WMAP : Launched  in 2001 (ended august 2010) 
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WMAP 
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WMAP´s angular 
resolution is much 

better than COBE´s, 
what allows to 
extract more 

information from 
CMB fluctuations 

The CMB power spectrum 
from WMAP 

measurements. Red line is 
the cosmological model fit 

and the gray band is the 
error  

WMAP 
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Arrived to Lagrangian Point 2 in july 2009. 
More precise than WMAP and measurement 
of polarization.  High frequency ended taking 
data on january 2012. First cosmological 
results in january 2013 

Planck: The next generation 



E. Sánchez TAE 2012 34 

Cosmology from CMB 
Measure temperature distribution (fluctuations) 
Build a map of the anisotropies 
Obtain power spectrum from the map 
Fit cosmological parameters to the measured power spectrum 
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WMAP 7 Power Spectrum and LCDM prediction 
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The discovery of the accelerated expansion of the 
universe (1998) was a huge surprise, since gravity 
acting on matter slows down the expansion, so we 
expect a deccelerating expansion, not an 
accelerating one 
 

Whatever mechanism causes the acceleration, 

we call it “dark energy”: 

– Einstein’s cosmological constant? 
– Some new dynamical field (“quintessence”)? 
– Modifications to General Relativity? 

What do we mean by dark energy? 
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WHAT DO WE KNOW ABOUT DARK ENERGY? 

1) It emits no electromagnetic radiation 

2) It has large and negative pressure  

3) Its distribution is homogeneous. Dark energy does not cluster 

significantly with matter on scales at least as large as galaxy 

clusters 

Dark energy is qualitatively very different from dark matter. Its pressure is comparable 
in magnitude to its energy densisty (it is energy-like) while matter is characterized by a 
negligible pressure 

Dark energy is a diffuse, very weakly interacting with matter and very low energy 
phenomenon. Therefore, it will be very hard to produce it in accelerators. As it is not 
found in galaxies or clusters of galaxies, the whole universe is the natural (and perhaps 
the only one) laboratory to study dark energy. 

No well-motivated theoretical explanations for dark energy 

Very likely, progress will come from improving observational constraints  
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The Cosmological Constant Case 
All current observations are compatible with dark energy being the 
cosmological constant. This is the most plausible and the most 
puzzling dark energy candidate.  
 

w= -1 with ~10% precision assuming flat universe and constant w 

There is no physical explanation for L from the particle theory. If it 
is the vacuum energy 

W
L

~0.7                 r
L

~(10 meV)4 

While the estimate from QFT is  rL
~M4

Planck~10120 x (10 meV)4 
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A phenomenological way to parametrise the dark energy properties: 
Use the parameter w of the equation of state.  

w=p/ρ 

 

 Main features to be tested observationally: Is w=-1? Is dw/dz not null? 

DETF parametrizes w(z) = w0 + wa (1-a); a(t)=scale factor=D(t)/D(0) 

The DETF figure-of-merit (FoM) is the inverse of the area of the error ellipse 
enclosing the 95% confidence limit in the w0-wa plane. Larger figure-of-merit 
indicates greater accuracy. It is the standard way to compare measurements 
of dark energy 

Observational Probes of Dark energy 

 Standard Candles: Measure dL=(1+z) r(z) 
 Standard Rulers: Measure dA=r(z)/(1+z) 

 Number Counts: Measure dV/dz dΩ = r2(z)/√(1-k r2(z)) 
 Growth of structure: A more complicated function of H(z) 
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Observational Probes of Dark energy 

The practical implementation of those observables can be done in many ways: 

Distance probes: CMB acoustic peaks, SNIa, BAO, SZ+X-ray+Optical clusters, strong 

lensing statistics, Ly-alpha forest correlations, Alcock-Pazynski test, galaxy counts… 

Growth of structure probes: CMB, weak lensing, galaxy clusters, Ly-alpha forest, 

ISW effect, … 

Many tests to attack the problem of dark energy, with different sensitivities, different 

systematics and different levels of practical difficulty. The study of dark energy must 
be done using multiple techniques. 
 

No single technique is sufficiently powerful to improve the knowledge of dark 

energy at the level of one order of magnitude. 

 

Combinations of techniques: substantially more statistical power, much more 

ability to discriminate among dark energy models, and more robustness to 

systematic errors than any single technique. 

 

Also, the confirmation of results from any single method  
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Observational Probes of Dark energy 
Four methods are identified by the DETF as the most promising: 

Supernovae Ia BAO 

Galaxy 
Clusters 
Counts 

Weak 
Gravitational  
Lensing 
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Observational Probes of Dark energy 
And 2 more that have become important in recent years: 
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Redshift  Space Distortions 
Change the distribution of 
matter along the line of sight. 
The size of the effect is related 
to cosmology 

Weak Lensing Magnification 
The gravitational lensing effect can 
change the distribution of observed 
galaxies. Correlated with spatial 
distribution and therefore cosmology 
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How to measure these probes 
In order to obtain scientific results, we need to take into 
account all the effects from the emission of light by the 
source to its translation into cosmological parameters 

The source 
 
Atmosphere: Seeing… 
 
Telescope+optics: 
PSF… 
 
Camera+Electronics+
DaQ 
 
Pipeline for data  
Reduction 
 
Scientific analysis 
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Types of observations 
The information we obtain about the universe 
arrives in the form of particles: Photons, cosmic 
rays, neutrinos (…and dark matter, gravitational 
waves, anything else?) 

Main body of cosmology observations uses photons (visible or NIR) 
Several types of observations: Images, spectroscopy, sky background, 
calibration… 
Main observables are: Number of photons as a function of energy, 
position, time, polarization… 

Signal in the detector  Photons properties  
Source properties  Cosmological parameters 
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Light is measured with huge telescopes, located where the 
best sky observing conditions are available 
Blanco Telescope (4 m) at Cerro Tololo (Chile) 

Example of Telescope 
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Astronomical Cameras 

Example: Dark 
Energy Camera 

(DECam) @ Blanco 
Telescope 
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2 fundamental types of observations: Obtaining the full spectrum (need 
huge telescopes and large times. Only for selected targets) or obtaining 
colors from wide wavelength bands (for all objects, but less information) 

To  obtain cosmology from images: 
Measure  objects positions on the sky: From calibrated images (doable) 
Classify objects: From spectrum (doable) or colors (difficult) 
Measure  the redshift: Doable  from spectra, difficult from colors 

Obtaining Results from  images 
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Spectroscopic Redshift: 
-Very precise  through line 
identificcation 
- Extremely hard: >45 minutes per 
object 

Photometric Redshift: 
-Less precise, measure flux within filters 
- Doable for all objects within  an image 
in  a few minutes  

Redshift Measurement 
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The Cosmic Distance Ladder 

Each  method  is used to calibrate the next one 
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The Hubble constant  gives the 
expansion  rate  of the universe today. 
Its determination has become more and 
more precise. The current best value  
(2009) is h0=74.2 ± 3.6 km/s/Mpc 

The Hubble Constant 
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DARK ENERGY PROBES AND RESULTS 



Supernovae Ia 
This is the technique that allowed the discovery of the dark energy. 

The most mature technique to date 

SN Ia are GOOD DISTANCE INDICATORS 

Search strategy 

• Rolling search 

• Look systematically  

to the same part of the 

sky 

Classification 

• Obtain spectra and 

colors of all the 

supernovae 

Obtain the light curves 

• In many colors 
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Supernovae Ia 

SN Ia are GOOD DISTANCE INDICATORS 

Not standard candles, but standarizable 

Calibrated using nearby sne, cepheids and phenomenological models 

Relate light curve shape to luminosity: Several precise 
phenomenological models have been developed, SALT2, 

MLCS2k2. More precise than the initial corrections Δm15 or 
the stretch factor. 
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Supernovae Ia 

µ=m-M=5log10(dL/10pc)  
 distance modulus 

2

2
102 )10/),((log5(


 pczdL

objects
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2
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
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objects




and fit the 
cosmological 
parameters using a 
chi-square 

M = Absolute magnitude 
(known for standard 
candles),  
 
m = apparent magnitude 
(measured for each sn) 

Once the magnitudes 
are measured, build 
the Hubble diagram 
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Supernovae Ia: Systematics from Union2 data set 
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Baryon Acoustic Oscillations 
• Each initial overdensity (in DM & baryons) is an overpressure that 

launches a spherical sound wave (at 57% of the speed of light). 

 

• Photons, that provided the pressure, decouple at recombination.   

 

• Sound speed drops very sharply and waves got frozen at a radius of 150 

Mpc. 

 

• An overdensity in baryons at 150 Mpc  and at the origin (DM) both seed 

the formation of galaxies. More galaxies separated by this distance. 

• The scale of the acoustic oscillations depends on ΩM and ΩB. 
 
• The CMB anisotropies measure these quantities and fix the oscillation 
scale at a redshift of ~1100. 
 
• In a redshift survey, we can measure this scale both along the line of 
sight and perpendicular to the line of sight. These measurements give 
H(z) and DA(z) respectively! 
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BARYON PHOTON DENSITY 

PROFILE 

htp://astro.berkeley.edu/~mwhite/bao/ 

At z>>1000 the universe was made of dark matter 

(DM), neutrinos and a highly-coupled relativistic 

photon-“baryon” (protons and electrons) gas. 

Any initial over-density (in DM, neutrinos and gas) 

creates an overpressure that launches a spherical 

pressure (sound) wave in the gas. 

This wave travels outwards at the speed of sound in 

the gas, cs = c / √3 

At z ~ 1100 (t ~ 350 000 yr), temperature drops 

enough (T ~ 3000 K) for protons and electrons to 

combine into neutral hydrogen atoms. Pressure 

providing photons decouple and free-stream to us 

(CMB) 

Over-density in the original center (DM) and in the 

shell (gas) both seed the formation of galaxies 

Preferred separation of galaxies at 150 Mpc: 

STANDARD RULER 

Sound speed of baryons plummets. Wave stalls at a 

radius of ~150 Mpc, fixed by CMB measurements. 
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Baryon Acoustic Oscillations 
Measure the position and redshift of galaxies and compute the 
correlation function (or the power spectrum). 

This is an emerging technique. Less affected by systematic errors 

than the other probes of dark energy. 
SDSS 
2005 

z ~ 0.35 

Main Systematics: 
Galaxy Bias 
Redshift Space distortions 
Non-linearities 
Photo-z 
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Number Counts of Clusters of Galaxies 

The number of galaxy clusters as a function of angle and 
redshift is very sensitive to the cosmological parameters, and 
in particular to the dark energy 

Sensitivity comes from 
the volume element and 

from the growth of 
structure as a function of 

the redshift 

Mohr (2005) 
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To obtain cosmology from clusters of galaxies, first we have to identify 
them. Several  methods have been proposed: 

Sunyaev Zel’dovich effect 

X-ray emission from 

cluster gas 

Optical data  

Weak lensing 

newly discovered 
supercluster, PLCK 
G214.6+37, 

PLANCK Data 
release 

(16/01/2011) 

SPT Results  
R. Williamson et al., 

arXiV:1101.1290 astro-
ph (2011) 

SPT-CL J2344-4243 
Z=0.62 
Blanco/mosaic-II irg 

SPT-CL J2337-5942 
Z=0.775 
Spitzer-Magellan ig 
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Number Counts of Clusters of Galaxies 

Second, measure mass 
and redshift 
Mass from SZ, X-ray or 
lensing 
Redshift from optical 



This is an emergent and very promising 

method, but not has been probed yet. Its final 

sensitivity will be fixed by the systematic errors 

SYSTEMATICS: 

Observable-mass relation: X-ray, SZ and weak 
lensing calibration  

Sample selection, contamination 

Photometric redshift 

Needs: 

Clean way of selecting a large number of clusters 

Redshift of each cluster 

Observables that can be used as mass estimators 

First mass estimations from weak lensing 
AMI consortium 

ArXiv:1101.5912 [astro-ph] (2011) 

A611 
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Number Counts of Clusters of Galaxies 



  

Observer 

Dark matter halos 

Measure the distortion of background images by the foreground matter 

Weak lensing effects of the order of 1% 

UNLENSED LENSED 

Weak Gravitational Lensing 
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Magnification and distortion effects due to weak lensing can be used to 
probe the statistical properties of the matter distribution between the 
observer and the distant sources. 

Assume that galaxies are intrinsically 
randomly oriented . Then, any coherent 
alignment of images signals the 
presence of an intervening tidal 
gravitational field. 
 
The positions on the sky of galaxies at 
different distances should be 
independent. A statistical association of 
foreground galaxies with background 
galaxies can indicate the magnification.  

 

Weak lensing is sensitive to 

cosmology through distances 

and the growth factor. 
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Weak Gravitational Lensing 



Weak Gravitational Lensing 

Systematics: 

Theory: Small scale 
power spectrum 

Galaxy shape 
measurement 

Redshift 
measurement 

Intrinsic alignment 

False detections 
shear 

Control the PSF and 
instrumental 
effects  very 
carefully. 

CTIO Lensing Survey 
75 square degrees 
~2 million galaxies 

Jarvis et al., 
 ApJ 644 (2006) 71 
astro-ph/0502243 

COSMOS from HST 
1.64 square degrees up to 

Magnitude 26.6 
R. Massey et al. 

ApJ Suppl. 172 (2007) 235 
astro-ph/0701480 
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CURRENT SITUATION: 
COSMOLOGICAL PARAMETERS  
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Current Situation: CLUSTERS AND WEAK LENSING 

NO SIGNIFICANT CONSTRAINTS ON DARK ENERGY YET 
CLUSTERS: 
SZ effect measured (SPT, ACT, Planck...) 
No dark energy constraints  
WEAK LENSING: 

Shear signal has been measured in many small surveys: Proof of 

concept. Results still limited by the size of the surveys 

CTIO Lensing Survey 



Current Situation: BAO 
Current results from SDSS,2dF, WIGGLEz 

and BOSS Start to constrain the properties 
of the dark energy 

BAO is a geometric constraint: A 
combination of angular diameter distance 

and Hubble parameter is used 
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arXiv:1203.6594 

BAO Peak! 

Latest Results from BOSS 

Survey (03/2012) BAO peak 

observed at 6 sigma 

significance 

arXiv:1207.4781 



Current Situation: BAO 
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arXiv:1206.5309 

arXiv:1203.6594 

BAO data are compatible with dark energy being a 

cosmological constant 

BAO used up to redshift 0.6. Still a large room for 

improvements 

arXiv:1203.6516 



Current Situation: CMB 

SPT , arXiv:1012.4788 (astro-ph) 

E. Sánchez TAE 2012 71 



Current Situation: CMB 

WMAP (2001-2009), current data release 7 years + ACBAR + QUAD + ACT 

+ SPT up to l~10000, SZ effect PLANCK (2009-2012) No cosmology yet 

SPT , arXiv:1012.4788 (astro-ph) 
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Current Situation: CMB 

ACT, arXiv:1009.0866 (astro-ph) 
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Hint of new physics??? 
More than 3 relativistic 
species is favored 

7 acoustic peaks already 
measured in the power 
spectrum 
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Current Situation: CMB 

Constraints 
on inflation 
from CMB 



Current Situation: Supernovae 

No constrain for z>1 

 

Systematic errors are now 

of the same size than 

statistical errors 

 

Zero-point uncertainties 

Most recent results from Union2 supernovae set (Amanullah et al. ApJ 716 (2010) 712) 

557 supernovae Ia uniformly analyzed 
Best constraints to date. LCDM good fit to the data 
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UNION2          supernovae 

WMAP7          CMB 

Percival 2010  BAO 

NO SN  

SYSTEMATICS 
WITH SN 

SYSTEMATIC

S 

Current Situation. Cosmology constraints 

Percival et al., 2009 

WMAP7 

Union2 

NO SN 
SYSTEMATICS 

WITH SN 
SYSTEMATICS 
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Current Situation: Cosmology Constraints 

NO SN 

SYSTEMATIC

S 

WITH SN 

SYSTEMATTIC

S 

Combined data compatible with dark energy being a cosmological 

constant. Good consistency among different data sets. 

Only combined probes get sensitivity to dark energy 

NO SN 
SYSTEMATICS 

WITH SN 
SYSTEMATICS 
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Current Situation: Cosmology Constraints 

NO SN SYSTEMATICS 

WITH SN SYSTEMATICS 

Union2 SN Data 
SN+CMB+BAO 
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SNLS+CMB+BAO 

arXiV: 1207.4781 



Dark energy detected with 

high statistical significance 

for z<1 
 

Current data do not constrain 

dark energy at z>1 
 

LCDM remains an excellent fit to 

the data. 

 

There is still large room for 

possible evolution of dark 

energy wit redshift 

 

NEW and MORE PRECISE DATA 

are NEEDED: LARGE GALAXY 

SURVEYS 

CURRENT SITUATION 
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SOME GALAXY SURVEYS 2010-2020 

Spectroscopic surveys:  
WiggleZ, BOSS, BigBOSS, HETDEX, 
WFMOS/Sumire, Euclid (NIS)... 

Photometric surveys:  
DES, Pan-STARRS, HSC, Skymapper, PAU, LSST, 
Euclid (EIC)... 
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Summary 
The existence of dark energy has been very well stablished below z~1 
LCDM describes all data up to now 
Dark Energy is compatible with a cosmological constant 
Not enough sensitivity yet to  its variation with time (redshift) 
 
Several methods to measure dark energy properties have been 
proposed and verified 

Supernovae  Ia 
BAO 
Weak Lensing 
Clusters 
RSD 
Magnification 

 
They will be applied in the coming years 


